Browse > Article
http://dx.doi.org/10.4283/JMAG.2016.21.1.046

Photocatalytic Degradation of Oxytetracycline Using Co-precipitation Method Prepared Fe2O3/TiO2 Nanocomposite  

Jia, Yuefa (Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies)
Liu, Chunli (Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies)
Li, Rong (Research Center of Nano Science and Technology, Shanghai University)
Publication Information
Abstract
$Fe_2O_3/TiO_2$ nanocomposite were successfully synthesized by co-precipitation method using $Fe(NO_3)_3{\cdot}9H_2O$ and $Ti(SO_4)_2$ as raw materials. Structural and textural features of the mixed oxide samples were characterized by X-ray diffractometer, field emission scanning electron microscopy and energy-dispersive X-ray. The effects of initial concentration of oxytetracycline (OTC), different competitive ions and organics on the photocatalytic degradation rate of OTC by the $Fe_2O_3/TiO_2$ nanocomposite were analyzed under UV and visible light irradiation. The results indicate that the optimized initial concentration of OTC was 50 mg/L to achieve the best photocatalytic efficiency. $Cu^{2+}$, $NH_4{^+}$, $C_3H_8O$ and EDTA in the aqueous suspension were found to suppress the degradation rate of OTC, whereas the effect of $NO_3{^-}$ and $H_2C_2O_4$ can be ignored.
Keywords
$Fe_2O_3/TiO_2$; photocatalyst; competitive ions and organics; OTC;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. K. Singh, G. Rathore, V. Sing, I. Mani, R. K. Singh, S. K. Mishra, B. N. Mishra, and O. P. Verma, Int. J. Microbiol. Res. 1, 25 (2009).   DOI
2 M. Rabolle and N. H. Spliid, Chemosphere 40, 715 (2000).   DOI
3 R. Li, Y. F. Jia, J. Wu, and Q. Zhen, RSC Adv. 5, 40764 (2015).   DOI
4 A. J. Watkinson, E. J. Murbyd, D. W. Kolpine, and S. D. Costanzof, Sci. Total. Environ. 407, 2711 (2009).   DOI
5 S. G. Segura and E. Brillas, Water Res. 45, 75 (2011).   DOI
6 M. H. Khan, H. Bae, and J. Y. Jung, J. Hazard. Mater. 181, 659 (2010).   DOI
7 O. U. Merih and A. K. B. Isil, J. Agric. Food. Chem. 57, 11284 (2009).   DOI
8 L. Migliore, M. Fiori, A. Spadoni, and E. Galli, J. Hazard. Mater. 215-216, 227 (2012).   DOI
9 L. H. Huang, Y. Y. Sun, W. L. Wang, Q. Y. Yue, and T. Yang, Chem. Eng. J. 171, 1446 (2011).   DOI
10 J. H. O. S. Pereira, V. J. P. Vilar, M. T. Borges, O. Gonzalez, S. Esplugas, and R. A. R. Boaventura, Sol. Energy 85, 2732 (2011).   DOI
11 C. Zhao, Y. Zhou, D. R. D. Johannes, J. Zhai, D. R. Zhai, J. Y. Wei, and H. P. Deng, Chem. Eng. J. 248, 280 (2014).   DOI
12 C. Zhao, H. P. Deng, Y. Li, and Z. H. Liu, J. Hazard. Mater. 176, 884 (2010).   DOI
13 J. H. O. S. Pereira, A. C. Reis, D. Queiros, O. C. Nunes, M. T. Borges, V. J. P. Vilar, and R. A. R. Boaventura, Sci. Total. Environ. 463-464, 274 (2013).   DOI
14 X. L. Liu, P. Lv, G. X. Yao, C. C. Ma, P. W. Huo, and Y. S. Yan, Chem. Eng. J. 217, 398 (2013).   DOI
15 A. K. Tripathi, M. C. Mathpal, P. Kumar, M. K. Singh, S. K. Mishra, R. K. Srivastava, J. S. Chung, G. Verma, M. M. Ahmad, and A. Agarwal. Mat. Sci. Semicon. Proc. 23, 136 (2014).   DOI
16 M. Mishra, H. Park, and D. M. Chun, Adv. Powder Technol (in press). http://dx. doi.org/10.1016/j.apt.2015.11.009.   DOI
17 M. W. Lam, K. Tantuco, and S. A. Mabury, Environ. Sci. Technol. 37, 899 (2003).   DOI
18 Y. P. Zhao, J. J. Geng, X. R. Wang, X. Y. Gu, and S. X. Gao, J. Colloid and Interf Sci. 361, 247 (2011).   DOI
19 Z. Q. He, X. Xu, S. Song, L. Xie, J. J. Tu, J. M. Chen, and B. Yan, J. Phys. Chem. C 112, 16431 (2008).
20 S. Q. Liu, L. R. Feng, N. Xu, Z. G. Chen, and X. M. Wang, Chem. Eng. J. 203, 432 (2013).
21 W. Zhou, H. G. Fu, K. Pan, C. G. Tian, Y. Qu, P. P. Lu, and C. C. Sun, J. Phys. Chem. C 112, 19584 (2008).   DOI
22 W. Bernd, L. Johannes, B. Philippe, and S. Laura, Environ. Sci. Technol. 30, 2397 (1996).   DOI