• Title/Summary/Keyword: light intensity controller

Search Result 33, Processing Time 0.027 seconds

Effect of the 100Hz PWM Low Power Light Irradiation in Proliferation of NTacSam:SD Bone-marrow Cell (NTacSam:SD 골수 세포의 증식에 100Hz PWM 저출력 광 조사가 미치는 효과)

  • Cheon, Min-Woo;Kim, Seong-Hwan;Lee, Ho-Sic;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04b
    • /
    • pp.10-11
    • /
    • 2008
  • We developed the equipment palpating cell proliferation using a high brightness LED. This equipment was fabricated using a micro-controller and a high brightness LED, and designed to enable us to control light irradiation time, intensity, frequency and so on. Especially, to control the light irradiation frequency, FPGA was used, and to control the change of output value, TLC5941 was used. Control stage is divided into 30 levels by program. Consequently, the current value could be controlled by the change of level in Continue Wave(CW) and Pulse Width Modulation(PWM), and the output of a high brightness LED could be controlled stage by stage. And then, each experiment was performed to irradiation group and non-irradiation group for bone marrow cells. MIT assay method was chosen to verify the cell increase of two groups and the effect of irradiation on cell proliferation was examined by measuring 590nm transmittance of ELISA reader. As a result, the cell increase of bone marrow cells was verified in irradiation group as compared to non-irradiation group.

  • PDF

Effect of LEDs Light of 633 nm Wavelength in Skin of Organism (633 nm 파장의 LED 광원이 생체 피부에 미치는 영향)

  • Cheon, Min-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.760-765
    • /
    • 2008
  • Low power laser therapy is internationally certified and is known to be effective in stimulating DNA in living organisms, increasing protein synthesis and activating cell division, smoothing blood circulation, promoting cell activation, cell regeneration and function. It also has anti-inflammatory, anti-edemic, anti-fibrous dysplastic and neuralogic hyperfunctional effects. This study was intended to verify the effect of LED irradiation therapy on wound healing in cell and animal tests by applying LED irradiator using a laser and laser diode, which was independently designed and developed to emit beams of similar wavelength to that of a laser. This equipment was fabricated using a micro-controller and a high brightness LED, and designed to enable us to control light irradiation time, intensity and reservation. In case of cell proliferation experiment, each experiment was performed to irradiation group and non-irradiation group for tissue cells. MTT assay method was chosen to verify the cell increase of two groups and the effect of irradiation on cell proliferation was examined by measuring 590 nm transmittance of micro-plate reader. In the wound healing experiment, 1$cm^2$ wounds on the skin wound of SD-Rat(Sprague-Dawley Rat) were made. Light irradiation group and none light irradiation group divided, each group was irradiated one hour a day for 9 days. As a result, the cell increase of tissue cells was verified in irradiation group as compared to non-irradiation group. And, compared with none light irradiation group, the lower incidence of inflammation and faster recovery was shown in light irradiation group.

The effect of 100KHz PWM LED light irradiation on RAT bone-marrow cells (100kHz PWM LED 광조사가 백서 골수세포에 미치는 영향)

  • Cheon, Min-Woo;Kim, Seong-Hwan;Kim, Young-Pyo;Lee, Ho-Sic;Park, Yong-Pil;Yu, Seong-Mi;Lee, Hee-Gap;Kim, Tae-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.512-513
    • /
    • 2008
  • The study examined what effects 100kHz PWM LED light irradiation causes to bone marrow cells of SD-Rat when LED characterized cheap and safe is used onto the light therapy by replacing the low 1evel laser. We developed the equipment palpating cell proliferation using a high brightness LED. This equipment was fabricated using a micro-controller and a high brightness LED, and designed to enable us to control light irradiation time, intensity, frequency and so on. Especially, to control the light irradiation frequency, FPGA was used, and to control the change of output value, TLC5941 was used. Consequent1y, the current value could be controlled by the change of 1eve1 in Continue Wave(CW) and Pulse Width Modulation(PWM), and the output of a high brightness LED could be controlled stage by stage. MTT assay method was chosen to verify the cell increase of two groups and the effect of irradiation on cell proliferation was examined by measuring 590nm transmittance of ELISA reader. As a result, the cell increase of Rat bone marrow cells was verified in 100kHz PWM LED light irradiation group as compared to non-irradiation group.

  • PDF

OLED Lighting System Integrated with Optical Monitoring Circuit (광 검출기가 장착된 OLED 조명 시스템)

  • Shin, Dong-Kyun;Park, Jong-Woon;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.13-17
    • /
    • 2013
  • In lighting system where several large-area organic light-emitting diode (OLED) lighting panels are involved, panel aging may appear differently from each other, resulting in a falling-off in lighting quality. To achieve uniform light output across large-area OLED lighting panels, we have employed an optical feedback circuit. Light output from each OLED panel is monitored by the optical feedback circuit that consists of a photodiode, I-V converter, 10-bit analogdigital converter (ADC), and comparator. A photodiode generates current by detecting OLED light from one side of the glass substrate (i.e., edge emission). Namely, the target luminance from the emission area (bottom emission) of OLED panels is monitored by current generated from the photodiode mounted on a glass edge. To this end, we need to establish a mapping table between the ADC value and the luminance of bottom emission. The reference ADC value corresponds to the target luminance of OLED panels. If the ADC value is lower or higher than the reference one (i.e., when the luminance of OLED panel is lower or higher than its target luminance), a micro controller unit (MCU) adjusts the pulse width modulation (PWM) used for the control of the power supplied to OLED panels in such a way that the ADC value obtained from optical feedback is the same as the reference one. As such, the target luminance of each individual OLED panel is unchanged. With the optical feedback circuit included in the lighting system, we have observed only 2% difference in relative intensity of neighboring OLED panels.

Solar Cells Characteristics Tester

  • Jirawath, Parnklang;Amnard, Jenjirodpipat;Santi, Hanklar
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.511-511
    • /
    • 2000
  • The equipment is used for testing the electrical characteristics of solar cells that were connected to be a solar panel, which can be found anywhere of solar power plant. This device was built from power switch devices f3r sinking the high current of the solar panel. The processor is a controller, which controls the quantity of the current, which flow through the switching devices and collect the characteristic of the solar panel. The tester can measure the current, voltage, temperature, and light intensity, which are main factors that affect the electrical characteristics of solar cells. 12 bits resolution signal converter is used to change the measuring levels so we can change measuring levels to 4096 levels, and these data are stored in tile memory. The equipment can also calculate the maximum power of the solar system panel.

  • PDF

Modeling and Controller Design of an Automotive HID Lamp Ballast (자동차 헤드라이트용 고압 방전등 안정기 시스템의 모델링 및 제어기 설계)

  • Lee, In-Gyu;Choe, Seong-Jin;Lee, Gyu-Chan;Jo, Bo-Hyeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.8
    • /
    • pp.545-550
    • /
    • 2000
  • This paper presents design and analysis of an HID lamp ballast for a fast turn on characteristics and stable operation. It produces a high open circuit voltage for the ignition and it is controlled to supply effectively the power required to shorten the warm-up period after the breakdown. The lamp modeling by empirical data is presented. It is very effective in the designing of the control loop in the steady-state operating region. A stable operation of the lamp power regulation in the steady state is achieved, which is crucial for the long life time and constant light output. Stability analysis of the system is performed and the results are verified through various simulation results and the hardware experiments.

  • PDF

Characteristics of Low-level Light Source for Animal Cell Proliferation (동물 세포 증식을 위한 저출력 광 소스의 특성)

  • Cheon, Min-Woo;Kim, Seong-Hwan;Song, Chang-Hun;Mun, Seong-Pyo;Kim, Tae-Gon;Park, Yong-Pil;Kim, Dae-Young;Kim, Young-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.92-97
    • /
    • 2007
  • This paper performed the basic study for developing the Photodynamic Therapy Equipment for medical treatment. We developed the equipment palpating cell proliferation using a high brightness LED. This equipment was fabricated using a micro-controller and a high brightness LED, and designed to enable us to control light irradiation time, intensity, frequency and so on. Especially, to control the light irradiation frequency, FPGA was used, and to control the change of output value, TLC5941 was used. Control stage is divided into 30 levels by program. Consequently, the current value could be controlled by the change of level in Continue Wave(CW) and Pulse Width Modulation(PWM), and the output of a high brightness LED could be controlled stage by stage. And then, each experiment was performed to irradiation group and non-irradiation group for both Rat bone marrow and Rat tissue cells. MTT assay method was chosen to verify the cell increase of two groups and the effect of irradiation on cell proliferation was examined by measuring 590 nm transmittance of ELISA reader. As a result, the cell increase of Rat bone marrow and tissue cells was verified in irradiation group as compared to non-irradiation group. The fact that specific wavelength irradiation has an effect on cell vitality and proliferation is known through this study.

Neuro-controller for Broadcast Lighting LED to Express xy Chromaticity Coordinates (xy 색도좌표 표현을 위한 방송 조명용 LED 신경망 제어기)

  • Park, Sung-Chan;Park, Jin-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.6
    • /
    • pp.706-713
    • /
    • 2020
  • To control the LED lighting for broadcasting, LED current control using tri-stimulus values is used for RGB LEDs. For the convenience of control, this control is approximated as a linear function or used as an appropriate value through trial and error. Also, it is not suitable for broadcast lighting because it does not use a diffuser plate applied for mixing sufficient light and color required for actual it. In this study, a neural network with excellent nonlinear function approximation is used as a control method for LED panels for broadcast lighting. We intend to implement an LED panels controller suitable for the desired chromaticity coordinates and dimming values of intensity. As a result of the performance evaluation, the errors of the xy chromaticity coordinates are mostly ±0.02 and the acceptable range of ANSI C78.377A was satisfied. The average errors of the xy chromaticity coordinate are xerror=0.0044 and yerror=0.0030, respectively, and we confirmed the superiority and stable performance of the proposed algorithm.

Research on Light Application System for the Dynamic Moving Effect of The Design on Porcelain (도자기 표면의 문양을 역동적으로 움직이는 효과를 갖는 광응용 시스템연구)

  • Ryoo, Hee Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.205-210
    • /
    • 2014
  • This is concerned with the technology to display the design on Porcelain and adjust malfunction for moving effect and light intensity by curator. More precisely, the technology makes it possible that the porcelain is connected to Light module which is the device for controlling light emission and rotating rolling plate, etc that are connected to LED light module, optical fiber and controller that is for scenario from the given storytelling. In addition, with a WiFi portable device (Smart-phone, other mobile device). equipped with a scenario programs, information for operation, failure and malfunction can be obtained and analyzed in real-time, and menu color and alarm is alerted when the displaying design is in abnormal status, which makes the early reactions to the status. Furthermore, the collected data can be sent through WiFi network to the device and PC managed by the curator specialized in managing the design on the Porcelain, thus the technology could help the curator who have less knowledge about moving pattern on the Porcelain. There is always a possibility of malfunction due to various condition that are caused by wring-harness when modules are wired-connected. In this research, in order to overcome this problem, we propose a system configuration that can do monitoring and diagnosis with a device for collecting data from LED control module, Light emission sensor and a personal WiFi device. Also, we performed connection between optical Fiber and LED and interlock for the system defined by the definition for information and storytelling scenario.

Non-contact Detection of Ultrasonic Waves Using Fiber Optic Sagnac Interferometer (광섬유 Sagnac 간섭계를 이용한 초음파의 비접촉식 감지)

  • Lee, Jeong-Ju;Jang, Tae-Seong;Lee, Seung-Seok;Kim, Yeong-Gil;Gwon, Il-Beom;Lee, Wang-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1400-1409
    • /
    • 2001
  • This paper describes a fiber optic sensor suitable for non-contact detection of ultrasonic waves. This sensor is based on a fiber optic Sagnac interferometer. Quadrature phase bias between two interfering laser beams in Sagnac loop is introduced by a polarization controller. A stable quadrature phase bias can be confirmed by observing the interferometer output versus phase bias. This method eliminates a digital signal processing for detection of ultrasonic waves using Sagnac interferometer. Interference intensity is affected by the frequency of ultrasonic waves and the time delay of Sagnac loop. Collimator is attached to the end of the probing fiber to focus the light beam onto the specimen surface and to collect the reflected light back into the fiber probe. Ultrasonic waves produced by conventional ultrasonic transducers are detected. This fiber optic sensor based on Sagnac interferometer is very effective for detection of small displacement with high frequency such as ultrasonic waves used in conventional non-destructive testing.