• 제목/요약/키워드: lifelog

검색결과 34건 처리시간 0.022초

Cognitive Impairment Prediction Model Using AutoML and Lifelog

  • Hyunchul Choi;Chiho Yoon;Sae Bom Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권11호
    • /
    • pp.53-63
    • /
    • 2023
  • 본 연구는 고령층의 치매 예방을 위한 선별검사 수단으로 자동화된 기계학습(AutoML)을 활용하여 인지기능 장애 예측모형을 개발하였다. 연구 데이터는 한국지능정보사회진흥원의 '치매 고위험군 웨어러블 라이프로그 데이터'를 활용하였다. 분석은 구글 코랩 환경에서 PyCaret 3.0.0이 사용하여 우수한 분류성능을 보여주는 5개의 모형을 선정하고 앙상블 학습을 진행하여 모형을 통합한 뒤, 최종 성능평가를 진행하였다. 연구결과, Voting Classifier, Gradient Boosting Classifier, Extreme Gradient Boosting, Light Gradient Boosting Machine, Extra Trees Classifier, Random Forest Classifier 모형 순으로 높은 예측성능을 보이는 것으로 나타났다. 특히 '수면 중 분당 평균 호흡수'와 '수면 중 분당 평균 심박수'가 가장 중요한 특성변수(feature)로 확인되었다. 본 연구의 결과는 고령층의 인지기능 장애를 보다 효과적으로 관리하고 예방하기 위한 수단으로 기계학습과 라이프로그의 활용 가능성에 대한 고려를 시사한다.

초연결사회에서 IoT 기반의 라이프로그 데이터를 활용한 사용자 맞춤형 디바이스 지능형 캐릭터 개발 (Development of User-customized Device Intelligent Character using IoT-based Lifelog data in Hyper-Connected Society)

  • 성기훈;김정우;설상훈;강성필;최재붕
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.21-31
    • /
    • 2018
  • 초연결사회에서 IoT 기반의 라이프로그 데이터는 사물인터넷 기술 전반에 활용되며 사용자의 요구사항을 반영한 맞춤형 서비스의 중요 요소로 자리 잡고 있다. 또한 사용자들은 소셜네트워크서비스를 활용하여 관심사 및 감정들을 쉽게 표현하면서 다양한 라이프로그 데이터가 축척되고 있다. 본 논문에서는 IoT 기반의 라이프로그 데이터를 활용한 지능형 캐릭터를 개발하여 사용자들의 감성을 체계적으로 파악하기 위해 정성적/정량적 데이터를 수집 및 분석한다. 이를 위해 사용자가 이용하는 소셜네트워크서비스를 통한 정성적 데이터와 웨어러블 디바이스를 통한 정량적 데이터를 수집한다. 수집한 데이터는 에스노그라피를 통한 페르소나와 비교하여 신뢰성을 검증한다. 추후에는 더 많은 사용자 라이프로그 데이터를 수집하여 데이터의 신뢰성을 확보하고 분석 과정에서 오차를 줄여 개인맞춤형 서비스를 제공할 수 있도록 지능형 캐릭터를 개발할 예정이다.

Real-world multimodal lifelog dataset for human behavior study

  • Chung, Seungeun;Jeong, Chi Yoon;Lim, Jeong Mook;Lim, Jiyoun;Noh, Kyoung Ju;Kim, Gague;Jeong, Hyuntae
    • ETRI Journal
    • /
    • 제44권3호
    • /
    • pp.426-437
    • /
    • 2022
  • To understand the multilateral characteristics of human behavior and physiological markers related to physical, emotional, and environmental states, extensive lifelog data collection in a real-world environment is essential. Here, we propose a data collection method using multimodal mobile sensing and present a long-term dataset from 22 subjects and 616 days of experimental sessions. The dataset contains over 10 000 hours of data, including physiological, data such as photoplethysmography, electrodermal activity, and skin temperature in addition to the multivariate behavioral data. Furthermore, it consists of 10 372 user labels with emotional states and 590 days of sleep quality data. To demonstrate feasibility, human activity recognition was applied on the sensor data using a convolutional neural network-based deep learning model with 92.78% recognition accuracy. From the activity recognition result, we extracted the daily behavior pattern and discovered five representative models by applying spectral clustering. This demonstrates that the dataset contributed toward understanding human behavior using multimodal data accumulated throughout daily lives under natural conditions.

VAE(Variational AutoEncoder) 기반 머신러닝 모델을 활용한 체중 라이프로그 이상탐지에 관한 연구 (Study on Lifelog Anomaly Detection using VAE-based Machine Learning Model)

  • 김지용;박민서
    • 문화기술의 융합
    • /
    • 제8권4호
    • /
    • pp.91-98
    • /
    • 2022
  • 웨어러블 기기를 통해 지속적으로 수집되는 라이프로그 데이터는 많은 이상값을 포함할 수 있으므로 데이터품질을 향상시키기 위해서는 이상값을 찾아 제거하는 것이 필요하다. 일반적으로 이상치의 개수가 정상 데이터의 개수보다 적기 때문에 클래스 불균형 문제가 발생한다. 이러한 불균형 문제를 해결하기 위해 Variational AutoEncoder를 outlier에 적용하는 방법을 제안한다. 제안된 방법으로 이상치 데이터를 전처리한 후, 다수의 머신러닝 모델(분류)을 통해 검증한다. 체중 데이터를 이용한 검증 결과, 모든 분류 모델에서 성능이 향상됨을 확인하였다. 실험 결과를 바탕으로 라이프로그 체중 데이터 분석 시 본 연구에서 제안한 이상치 처리 방법을 이용하여 데이터를 전처리한 후 성능이 가장 좋은 LightGBM 모델을 적용할 것을 제안한다.

웨어러블 센서를 이용한 라이프로그 데이터 자동 감정 태깅 (Automated Emotional Tagging of Lifelog Data with Wearable Sensors)

  • 박경화;김병희;김은솔;조휘열;장병탁
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권6호
    • /
    • pp.386-391
    • /
    • 2017
  • 본 논문에서는 실생활에서 수집한 웨어러블 센서 데이터에서 사용자의 체험 기반 감정 태그정보를 자동으로 부여하는 시스템을 제안한다. 사용자 본인의 감정과 사용자가 보고 듣는 정보를 종합적으로 고려하여 네 가지의 감정 태그를 정의한다. 직접 수집한 웨어러블 센서 데이터를 중심으로 기존 감성컴퓨팅 연구를 통해 알려진 보조 정보를 결합하여, 다중 센서 데이터를 입력으로 하고 감정 태그를 구분하는 머신러닝 기반 분류 시스템을 학습하였다. 다중 모달리티 기반 감정 태깅 시스템의 유용성을 보이기 위해, 기존의 단일 모달리티 기반의 감정 인식 접근법과의 정량적, 정성적 비교를 한다.

모바일 기반 라이프로그를 이용한 사용자 행동 예측 기법 (A user behavior prediction technique using mobile-based Lifelog)

  • 방재근;김병만
    • 한국산업정보학회논문지
    • /
    • 제19권6호
    • /
    • pp.63-76
    • /
    • 2014
  • 최근 많은 사람들이 스마트폰을 이용해 다양한 방법으로 원하는 정보를 추천 받고 있다. 그와 관련해 추천을 위한 많은 어플리케이션이 존재하지만, 현재 사용자 상황에 맞는 정보를 추천해 주는 것은 없다. 자동으로 사용자의 상황에 맞는 추천을 하기 위해서는 사용자의 과거 행위이력으로 부터 미래의 행위를 예측할 필요가 있다. 이에 본 논문에서는 스마트폰을 이용해 사용자의 현재 상황을 수집하고, 수집된 데이터를 라이프로그를 분석하여 구축한 베이지안 네트워크에 적용하여 현 행동을 판별한 후 연관분석을 통해 사용자가 미래에 하게 될 행동을 예측하는 방법을 제안한다. 5명의 실제 학생과 5명의 가상의 직장인에 대해서 실험 및 분석해 본 결과 그 유용성을 확인할 수 있었다.

라이프로그 이용이 기술 만족도와 잊혀질 권리 인식에 미치는 영향 (Effects of Lifelog Experience on Technology Satisfaction and Perception of Right to be Forgotten)

  • 윤일한;권순동
    • 정보보호학회논문지
    • /
    • 제26권3호
    • /
    • pp.837-852
    • /
    • 2016
  • 본 연구에서는 정보통신기술 이용의 순기능과 역기능을 연구하였고, 그 결과를 다음과 같이 요약할 수 있다. 첫째, 정보통신기술 이용 경험을 많이 할수록 정보통신기술의 유용성을 더 높게 인지하고 나아가 정보통신기술에 대한 만족도를 높게 느끼는 것으로 나타났다. 둘째, 정보통신기술 이용 경험을 많이 할수록 프라이버시 염려를 더 높게 인지하고 나아가 잊혀질 권리에 대한 필요성을 더 높게 인식하는 것으로 나타났다. 정보통신기술 이용에 따른 영향력은 순기능과 역기능 중에서 순기능이 더 높은 것으로 나타났다. 자기효능감이 높은 집단은 낮은 집단에 비하여 프라이버시 염려가 상대적으로 낮은 것으로 나타났다.

사용자 유사도 기반 경로 예측 기법 (User Similarity-based Path Prediction Method)

  • 남수민;이석훈
    • 한국정보기술학회논문지
    • /
    • 제17권12호
    • /
    • pp.29-38
    • /
    • 2019
  • 라이프로그를 이용한 경로 예측 기법은 정확한 경로 예측을 위하여 많은 양의 학습 데이터를 요구하며, 학습 데이터가 부족할 경우 경로 예측 성능이 저하된다. 학습 데이터 부족은 사용자의 이동 패턴이 유사한 다른 사용자의 데이터를 이용하여 해결이 가능하다. 따라서 이 논문은 사용자 유사도 기반 경로 예측 알고리즘을 제안한다. 이를 위하여 제안 알고리즘은 경로를 3단 그리드 패턴으로 학습하고 코사인 유사도 기법을 이용하여 사용자 간 유사도를 측정한다. 이후, 측정된 유사도를 학습된 모델에 적용하여 경로를 예측한다. 평가를 위하여 기존 경로 예측 기법들과 제안 기법의 경로 예측 정확도를 측정 및 비교한다. 그 결과, 제안 기법의 정확도는 66.6%로 다른 기법들에 비해 평균 1.8% 더 높은 정확도를 가진 것으로 평가된다.

시간흐름을 고려한 특징 추출과 군집 분석을 이용한 헬스 리스크 관리 (Health Risk Management using Feature Extraction and Cluster Analysis considering Time Flow)

  • 강지수;정경용;정호일
    • 한국융합학회논문지
    • /
    • 제12권1호
    • /
    • pp.99-104
    • /
    • 2021
  • 본 논문에서는 시간 흐름을 고려한 특징추출과 군집분석을 이용한 헬스 리스크 관리를 제안한다. 제안하는 방법은 세단계로 진행한다. 첫 번째는 전처리 및 특징추출 단계이다. 이는 웨어러블 디바이스를 이용하여 라이프로그를 수집하여 불완전데이터, 에러, 잡음, 모순된 데이터를 제거하며 결측 값을 처리한다. 그 다음 특징추출을 위해 주성분 분석을 통해 중요 변수를 선택하고, 상관계수와 공분산을 통해 데이터 간의 관계와 유사한 데이터들의 분류를 진행한다. 또한 라이프로그에서 추출한 특징을 분석하기 위해 시간의 흐름을 고려하여 K-means 알고리즘을 통해 동적 군집을 진행한다. 새로운 데이터는 오차 제곱합의 증가분을 기반으로 유사성 거리 측정 방법을 통해 군집을 진행하고, 시간의 흐름을 고려하여 군집에 대한 정보를 추출한다. 따라서 특징 군집을 통해 헬스 의사결정 시스템을 이용하여 신체적 특성, 생활습관, 질병여부, 헬스케어 이벤트 발생위험, 예상 정도 등의 요소를 통해 리스크를 관리할 수 있다. 성능평가는 Precision, Recall, F-measure을 사용하여 제안하는 방법과 퍼지방법, 커널기반 방법을 비교한다. 평가결과 제안하는 방법이 우수하게 평가된다. 따라서 제안하는 방법을 통해 유병자와의 유사도를 이용하여 정확한 사용자의 잠재적 건강 위험을 예측 및 적절한 관리가 가능하다.

확률기반 상위수준 컨텍스트 인식기를 활용한 라이프로그 태깅 인터페이스 (A Lifelog Tagging Interface using High Level Context Recognizer based on Probability)

  • 황주원;이영설;조성배
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권10호
    • /
    • pp.781-785
    • /
    • 2009
  • 모바일 디바이스의 발전으로 이를 이용하여 개인의 일상정보를 지속적으로 수집할 수 있게 되었다. 하지만 모바일 환경에서 수집한 개인의 일상정보는 그 양이 매우 방대하고, 모바일 환경의 불확실성과 모바일 디바이스의 제한된 용량과 배터리 등의 제약사항이 있어 수집한 일상정보가 불확실하다는 문제점이 있다. 위의 문제점을 극복하고, 일상정보를 효과적으로 관리하기 위해서는 검색성을 갖는 특징정보를 이용하여 태깅하는 작업이 요구된다. 따라서, 본 논문에서는 상위수준 컨텍스트 인식기를 활용한 태깅 인터페이스를 이용하여 보다 정확한 특징정보를 태깅하는 방법을 제안한다. 제안하는 방법은 일상정보의 특징정보인 상위수준 컨텍스트를 베이지안 네트워크로 모델링한 인식기로 추출한 후, 인식한 상위수준 컨텍스트를 태깅 인터페이스를 이용하여 사용자에게 추천하고, 사용자는 추천된 상위 수준 컨텍스트를 선별하여 일상정보에 직접 태깅할 수 있는 것이 특징이다. 제안하는 태깅 인터페이스는 사용성, 목표성, 기능성, 주도성 측면에서 작업지원수준을 평가한 결과 81%의 만족도를 보임을 확인하였다.