• 제목/요약/키워드: life-span design

검색결과 118건 처리시간 0.025초

교량의 충격계수에 관한 연구 (A Study on the Impact Factor of Bridges)

  • 윤일로;류택은
    • 한국산업융합학회 논문집
    • /
    • 제7권2호
    • /
    • pp.161-166
    • /
    • 2004
  • The impact factor of bridges is analyzed based on experimental data to examine the characteristics of the dynamic responses of bridges. The experimental impact factors are compared with the impact factor of Korean Highway Design Specification and Japan T-load in terms of the span length. According to the superstructural types of bridges, the variation of the impact factor is analyzed. When vehicles are passing on a bridge, the dynamic effect acts on the bridge impact factor more than at the time of design because of the velocity of vehicles, the surface roughness reduction due to the deterioration of the bridge deck pavement, and the disconnection of the bridge entrance and the expansion joint. Because the actual value is greater than the expected value at the time of design, the dynamic response of the bridge accelerates the deterioration of the bridge due to the accumulation of fatigue, and the bridge's life-time is shortened and can have an influence on the serviceability and safety of the bridge.

  • PDF

아파트 상품 디자인 개발을 위한 소비자 트랜드 분석 (A Trend Analysis of Consumers for the Development of Apartment Interior Design)

  • 박영순;이현정;김미경;조은숙
    • 한국실내디자인학회논문집
    • /
    • 제41호
    • /
    • pp.129-136
    • /
    • 2003
  • The purpose of this study is to analyze consumer's lifestyle, needs and preferences and design trends for planning of the future apartment interior design. Recently, social change such as computerization, industrialization, pluralism and globalization has been braught lots of changes to modern housing spaces. The meaning of ‘Family’ and ‘Residence’ has been diversified by various life-style of modern family. Therefore, the new concept of residence is needed to change for the future housing plans and satisfy their sophisticated needs and preferences considering modern family's lifestyle and life-span. This research was conducted through the questionaire-survey, taste style survey by show card, and focus group interview(F.G.I) for investigating consumer's life style and tastes. Through this research, four-types of consumer's lifestyle were classified by analyzing data and special spaces such as family-room, media room, interior planted-space, and men's room were needed to consider interior space planning. This study shows that the planning of storage space, flexible space, livingroom and multi-used space will be more important in apartment interior space.

Optimization of multiple tuned mass dampers for large-span roof structures subjected to wind loads

  • Zhou, Xuanyi;Lin, Yongjian;Gu, Ming
    • Wind and Structures
    • /
    • 제20권3호
    • /
    • pp.363-388
    • /
    • 2015
  • For controlling the vibration of specific building structure with large span, a practical method for the design of MTMD was developed according to the characteristics of structures subjected to wind loads. Based on the model of analyzing wind-induced response of large-span structure with MTMD, the optimization method of multiple tuned mass dampers for large-span roof structures subjected to wind loads was established, in which the applicable requirements for strength and fatigue life of TMD spring were considered. According to the method, the controlled modes and placements of TMDs in MTMD were determined through the quantitative analysis on modal contribution to the wind-induced dynamic response of structure. To explore the characteristics of MTMD, the parametric analysis on the effects of mass ratio, damping ratio, central tuning frequency ratio and frequency range of MTMD, was performed in the study. Then the parameters of MTMD were optimized through genetic algorithm and the optimized MTMD showed good dynamic characteristics. The robustness of the optimized MTMD was also investigated.

LCC 산정 시스템의 사용자인터페이스 설계 (User Interface Design for Life Cycle Cost Estimation System)

  • 양회령;신한우;김태희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.149-150
    • /
    • 2012
  • According to the increase of demand of the deteriorated building. The interest of the building's maintenance is continually increased, so studies about how to increase building's stability & prolonged life span are increased. This study's purpose is to maintain building's function, so we suggest a protocol type system of UI to estimate reasonable planning of demand of repair & replacement and to distribute budget.

  • PDF

간척지 내 단동형 온실의 풍하중에 대한 구조 안정성 분석 (Structural Safety of Single-Span Greenhouses under Wind Load of Costal Reclaimed Lands)

  • 홍세운;김락우;최원
    • 한국농공학회논문집
    • /
    • 제59권4호
    • /
    • pp.109-117
    • /
    • 2017
  • Coastal reclamation has created large flat lands, part of which is an attractive site to construct greenhouse complexes for the horticulture industry. Wind environments over these coastal lands are entirely different from those of the inland area, and demand increased structural safety. The objective of this study is to evaluate the structural safety of two single-span greenhouses, peach type and even-span type, under the wind characteristics of coastal reclaimed lands. The wind pressure coefficients acting on the walls and roofs of two greenhouses were measured by wind tunnel experiments, and those acting on the roofs were approximately two times larger than those suggested by the existing design guidelines. Consequently, structural analysis conducted by SAP2000 showed that greenhouse structures designed by the existing guidelines might lead to structural failure under coastal wind conditions because their maximum allowable wind speeds were lower than the design wind speed. Especially, the peach type greenhouse constructed in a reclaimed land could be damaged by approximately 48 % of the design wind speed and needed improvement of structural designs. This study suggested increasing the spacing of rafters with thicker pipes for the peach type greenhouse to enhance economic feasibility of the building under strong wind conditions of reclaimed lands.

Influence of multi-component ground motions on seismic responses of long-span transmission tower-line system: An experimental study

  • Tian, Li;Ma, Ruisheng;Qiu, Canxing;Xin, Aiqiang;Pan, Haiyang;Guo, Wei
    • Earthquakes and Structures
    • /
    • 제15권6호
    • /
    • pp.583-593
    • /
    • 2018
  • Seismic performance is particularly important for life-line structures, especially for long-span transmission tower line system subjected to multi-component ground motions. However, the influence of multi-component seismic loads and the coupling effect between supporting towers and transmission lines are not taken into consideration in the current seismic design specifications. In this research, shake table tests are conducted to investigate the performance of long-span transmission tower-line system under multi-component seismic excitations. For reproducing the genuine structural responses, the reduced-scale experimental model of the prototype is designed and constructed based on the Buckingham's theorem. And three commonly used seismic records are selected as the input ground motions according to the site soil condition of supporting towers. In order to compare the experimental results, the dynamic responses of transmission tower-line system subjected to single-component and two-component ground motions are also studied using shake table tests. Furthermore, an empirical model is proposed to evaluate the acceleration and member stress responses of transmission tower-line system subjected to multi-component ground motions. The results demonstrate that the ground motions with multi-components can amplify the dynamic response of transmission tower-line system, and transmission lines have a significant influence on the structural response and should not be neglected in seismic analysis. The experimental results can provide a reference for the seismic design and analysis of long-span transmission tower-line system subjected to multi-component ground motions.

행태로 접근한 실버타운 주거계획에 관한 연구 (A Study on the Housing Design by the Behavioral Approach in Silver Town)

  • 김덕선;김문덕
    • 한국실내디자인학회:학술대회논문집
    • /
    • 한국실내디자인학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.25-28
    • /
    • 2001
  • In modem society, the development of science and industrialization has brought economic growth, and better living environment, improved food life, advanced medicine, and increased span of life have leaded us into the aging society. In the current situation to move toward the aging society, it's needed to prepare housing planning for retirement community in consideration of the physical and psychological and behavioral features of the elderly to raise their quality of life. The purpose of this study was to map out proper housing planning for retirement community in consideration of the physical, psychological and behavioral characteristics of senior citizens, instead of just focusing on comfortable and convenient one.

  • PDF

교량의 신뢰성 검증을 위한 지역적 활하중 확률모형 구축 (Study on Location-Specific Live Load Model for Verification of Bridge Reliability Based on Probabilistic Approach)

  • 엄준식
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제16권2호
    • /
    • pp.90-97
    • /
    • 2016
  • Purpose: Majority of bridges and roads in Gangwon Province have been carrying loads associated with heavy materials such as rocks, mining products, and cement. This location-specific live loads have contributed to the present situation of overloading, compared to other provinces in Korea. However, the bridges in Gangwon province are designed by national bridge design specification, without considering the location-specific live load characteristics. Therefore, this study focuses on the real traffic data accumulated on regional weighing station to verify the live load characteristics, including actual live load gross vehicle weight, axle weight axle spacings, and number of trucks. Methods: In order to take into account the location specific live load, a governmental weigh station (38th national highway Miro) have been selected and the passing truck data are processed. Based on the truck survey, trucks are categorized into 3 different shapes, and each shape has been idealized into normal distribution. Then, the resulting survey data are processed to predict the target maximum live load values, including the axle loads and gross vehicle weights in 75 years service life span. Results: The results are compared to the nationally used DB-24 live loads, and the results show that nationally recognized DB-24 live load does not sufficiently represent real traffic in mountaineous region in Gangwon province. Conclusion: The comparison results in the recommendation of location-specific live load that should be taken into account for bridge design and evaluation.

Analysis and Design of a Three-port Flyback Inverter using an Active Power Decoupling Method to Minimize Input Capacitance

  • Kim, Jun-Gu;Kim, Kyu-Dong;Noh, Yong-Su;Jung, Yong-Chae;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • 제13권4호
    • /
    • pp.558-568
    • /
    • 2013
  • In this paper, a new decoupling technique for a flyback inverter using an active power decoupling circuit with auxiliary winding and a novel switching pattern is proposed. The conventional passive power decoupling method is applied to control Maximum Power Point Tracking (MPPT) efficiently by attenuating double frequency power pulsation on the photovoltaic (PV) side. In this case, decoupling capacitor for a flyback inverter is essentially required large electrolytic capacitor of milli-farads. However using the electrolytic capacitor have problems of bulky size and short life-span. Because this electrolytic capacitor is strongly concerned with the life-span of an AC module system, an active power decoupling circuit to minimize input capacitance is needed. In the proposed topology, auxiliary winding defined as a Ripple port will partially cover difference between a PV power and an AC Power. Since input capacitor and auxiliary capacitor is reduced by Ripple port, it can be replaced by a film capacitor. To perform the operation of charging/discharging decoupling capacitor $C_x$, a novel switching sequence is also proposed. The proposed topology is verified by design analysis, simulation and experimental results.

Integral Abutment Bridge behavior under uncertain thermal and time-dependent load

  • Kim, WooSeok;Laman, Jeffrey A.
    • Structural Engineering and Mechanics
    • /
    • 제46권1호
    • /
    • pp.53-73
    • /
    • 2013
  • Prediction of prestressed concrete girder integral abutment bridge (IAB) load effect requires understanding of the inherent uncertainties as it relates to thermal loading, time-dependent effects, bridge material properties and soil properties. In addition, complex inelastic and hysteretic behavior must be considered over an extended, 75-year bridge life. The present study establishes IAB displacement and internal force statistics based on available material property and soil property statistical models and Monte Carlo simulations. Numerical models within the simulation were developed to evaluate the 75-year bridge displacements and internal forces based on 2D numerical models that were calibrated against four field monitored IABs. The considered input uncertainties include both resistance and load variables. Material variables are: (1) concrete elastic modulus; (2) backfill stiffness; and (3) lateral pile soil stiffness. Thermal, time dependent, and soil loading variables are: (1) superstructure temperature fluctuation; (2) superstructure concrete thermal expansion coefficient; (3) superstructure temperature gradient; (4) concrete creep and shrinkage; (5) bridge construction timeline; and (6) backfill pressure on backwall and abutment. IAB displacement and internal force statistics were established for: (1) bridge axial force; (2) bridge bending moment; (3) pile lateral force; (4) pile moment; (5) pile head/abutment displacement; (6) compressive stress at the top fiber at the mid-span of the exterior span; and (7) tensile stress at the bottom fiber at the mid-span of the exterior span. These established IAB displacement and internal force statistics provide a basis for future reliability-based design criteria development.