This study examined several recommendation techniques to construct an effective book recommender system in a library. Experiments revealed that a hybrid recommendation technique is more effective than either collaborative filtering or content-based filtering technique in recommending books to be borrowed in an academic library setting. The recommendation technique based on association rule turned out the lowest in performance.
Journal of the Korean Society for information Management
/
v.41
no.3
/
pp.145-169
/
2024
This study examined university library services for students, including international students, and the AI-based information services provided by libraries. Additionally, the standards of Korean language education for international students were investigated. Based on the analysis of library services and these standards, a book recommendation system for learning Korean was developed using ChatGPT. The recommendation results from three training datasets were evaluated for recommendation precision. The results of the chatbot's book recommendations based on the 13 test questions were evaluated by recommendation precision. The comparison of the recommendation precision showed that the chatbot using the combined dataset was more successful in recommending all relevant books compared to the individual datasets. This study serves as an example of an effective approach to utilizing artificial intelligence technology for user services in university libraries.
Journal of Korean Library and Information Science Society
/
v.47
no.1
/
pp.279-303
/
2016
This study proposes the Book-Curation service as part of the information service offered through school library websites. Also, this study aims to establish recommendation standards for curation prior to detailed system planning. For such service, the following tasks were carried out. First, the list of recommended books of existing systems were analyzed to identify the attributes that can be used for recommendation in the user and book information. Second, the analyzed attributes were utilized to establish 12 recommendation standards. Finally, a survey was carried out to identify the user preferences as to each standards. The results are as follows. First, the majority of students responded that curation service is necessary for using a library. Second, the top three standards are as follows: "best lending books based on the keywords of individual users"; "best lending books of the same year students"; "best lending books on the textbook-related reference booklist".
Journal of Korean Library and Information Science Society
/
v.54
no.2
/
pp.23-42
/
2023
The library tour program is a new type of cultural program that was first introduced and operated by J City, and library tourists travel to specialized libraries in the city according to a set course and experience various experiences. This study aims to build a customized course recommendation model that considers the characteristics of individual participants in addition to the existing fixed group travel format so that more users can enjoy the opportunity to participate in library tours. To this end, the characteristics of library travelers were categorized to establish traveler personas, and library evaluation items and evaluation criteria were established accordingly. We selected 22 libraries targeted by the library travel program and measured library data through actual visits. Based on the collected data, we derived the characteristics of suitable libraries and developed a persona-based library tour course recommendation model using a decision tree algorithm. To demonstrate the feasibility of the proposed recommendation model, we build a mobile application mockup, and conducted user evaluations with actual library users to identify satisfaction and improvements to the developed model.
Journal of the Korean Society for information Management
/
v.39
no.3
/
pp.1-22
/
2022
The purpose of this study is to propose a book recommendation system that can be used in school libraries. The book recommendation system applies an algorithm based on association rules using DLS lending data and is designed to provide personalized book recommendation services to school library users. For this purpose, association rules based on the Apriori algorithm and betweenness centrality analysis were applied and detailed functions such as descriptive statistics, generation of association rules, student-centered recommendation, and book-centered recommendation were materialized. Subsequently, opinions on the use of the book recommendation system were investigated through in-depth interviews with teacher librarians. As a result of the investigation, opinions on the necessity and difficulty of book recommendation, student responses, differences from existing recommendation methods, utilization methods, and improvements were confirmed and based on this, the following discussions were proposed. First, it is necessary to provide long-term lending data to understand the characteristics of each school. Second, it is necessary to discuss the data integration plan by region or school characteristics. Third, It is necessary to establish a book recommendation system provided by the Comprehensive Support System for Reading Education. Based on the contents proposed in this study, it is expected that various discussions will be made on the application of a personalization recommendation system that can be used in the school library in the future.
Min-Ah Lim;Seung-Yeon Hwang;Dong-Jin Shin;Jae-Kon Oh;Jeong-Joon Kim
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.23
no.3
/
pp.193-198
/
2023
We study a learner-customized lecture recommendation project using deep learning. Recommendation systems can be easily found on the web and apps, and examples using this feature include recommending feature videos by clicking users and advertising items in areas of interest to users on SNS. In this study, the sentence similarity Word2Vec was mainly used to filter twice, and the course was recommended through the Surprise library. With this system, it provides users with the desired classification of course data conveniently and conveniently. Surprise Library is a Python scikit-learn-based library that is conveniently used in recommendation systems. By analyzing the data, the system is implemented at a high speed, and deeper learning is used to implement more precise results through course steps. When a user enters a keyword of interest, similarity between the keyword and the course title is executed, and similarity with the extracted video data and voice text is executed, and the highest ranking video data is recommended through the Surprise Library.
The roles and functions of domestic public libraries are diversifying, but various problems have emerged due to internally biased book lending. In addition, due to the 4th Industrial Revolution, public libraries have introduced a book recommendation system focusing on popular books, but the variety of books that users can access is limited. Therefore, in this study, the public library unborrowed book recommendation system was implemented limiting its spatial scope to Duryu Library in Daegu City to enhance the satisfaction of public library users, by using the loan records data (213,093 cases), user information (35,561 people), etc. and utilizing methods like cluster analysis, topic modeling, content-based filtering recommendation algorithm, and conducted a survey on actual users' satisfaction to present the possibility and implications of the unborrowed book recommendation system. As a result of the analysis, the majority of users responded with high satisfaction, and was able to find the satisfaction was relatively high in the class classified by specific gender, age, occupation, and usual reading. Through the results of this study, it is expected that some problems such as biased book lending and reduced operational efficiency of public libraries can be improved, and limitations of the study was also presented.
Journal of Korean Library and Information Science Society
/
v.52
no.3
/
pp.287-311
/
2021
It is not easy for information users to find books that are suitable for them in a knowledge information society. There is a growing need for libraries to break away from traditional services and provide user-tailored recommendation services, but there are few qualitative studies on user satisfaction so far. In this study, a user-customized book recommendation was performed by applying Apriori, a correlation analysis algorithm, and satisfaction factors were analyzed in depth through interviews. The experimental data was the loan data of 100 people who used the most frequently used loan data for 10 years from 2009 to 2019 of the S library in Seoul. The interviewees of the experiment were those who could be interviewed in depth. After the correlation analysis, the concepts and categories derived by analyzing the interview data were 59 concepts, 6 sub-categories, and 2 upper categories, respectively. The upper categories were 'reading' and 'book recommendation service'. In the 'reading' category, there were 16 concepts of motivation for reading, 8 concepts of preferred books, and 12 concepts of expected effects. Also, in the category of 'reading recommendation service', there were 10 'reflection factors', 4 'reflection methods', and 9 'satisfaction factors'.
Journal of the Korean BIBLIA Society for library and Information Science
/
v.31
no.4
/
pp.95-119
/
2020
The study examined the behavior of infant's caregivers using public libraries, measured the level of awareness of infant and toddler services in the library to determine the factors affecting their revisit or recommendation of use to others, and examined the impact of such recognition on the use behavior, revisit and willingness to recommend others. The study surveyed 146 caregivers of infants who use four public libraries in Gwangju Metropolitan City on demographic characteristics, library use behavior, level of awareness of library services, library revisit and recommendation to others. Analysis of this survey shows that the factors that influence the caregivers' revisit of the library or their desire to recommend to others through their caregivers' use of the library are the factors that influence the expansion of information data, the stability of space facilities, the accessibility of space facilities, and the ease of participation in programs among the various service factors provided by the library rather than the personal factors of infants and toddlers' caregivers.
Journal of the Korean BIBLIA Society for library and Information Science
/
v.28
no.4
/
pp.501-518
/
2017
Reducing the time it takes for researchers to acquire knowledge and introduce them into research activities can be regarded as an indispensable factor in improving the productivity of research. The purpose of this research is to cluster the information usage patterns of KOSEN users and to suggest optimization method of personalized recommendation service algorithm for grouped users. Based on user research activities and usage information, after identifying appropriate services and contents, we applied a Spark based big data analysis technology to derive a personal recommendation algorithm. Individual recommendation algorithms can save time to search for user information and can help to find appropriate information.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.