• Title/Summary/Keyword: lever

Search Result 412, Processing Time 0.026 seconds

An Ultraprecision Rotary Motor based on Inchworm-type Actuation (인치웜 구동방법에 의한 초정밀 회전모터)

  • Kim, Sang-Chae;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.152-157
    • /
    • 2001
  • An ultraprecision rotary motor is developed using inchworm motion of two belts actuated by elongation of piezoelectric elements. A symmetric lever mechanism with flexure hinges is designed to connect belts with piezoelectric elements. The lever mechanism is used not only to amplify the elongation of piezoelectric element but also to minimize the numbers of components and the effort for assembly. By experiment, the rotational angle by one cycle is varied from $0.2{\times}10-4 rad to 9.76{\times}10-4$ rad depending on input signal amplitude. Further, the motor has the capability of getting more precise rotational resolution by enlarging the radius of the rotor.

  • PDF

The New Interpretation of Archimedes' 'method' (아르키메데스 '방법'에 대한 새로운 해석)

  • Park, Sun-Yong
    • Journal for History of Mathematics
    • /
    • v.23 no.4
    • /
    • pp.47-58
    • /
    • 2010
  • This study suggests new interpretation about ancient mathematician Archimedes' 'method'. For this, we examined the core issue related to the interpretation of the 'method' and identified the unclear relation between the principle of the lever and the indivisibles, both of which have consisted of the main point of arguments. And by having conducted the exploratory historical guesswork about Archimedes' careful use of indivisibles, we make a hypothesis that the role of the principle of the lever in Archimedes' 'method' should be the control of ratio of change.

Simplified Observability Analysis of GPS/INS (GPS/INS 가관측성의 간편한 해석)

  • Hong, Sin-Pyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.12
    • /
    • pp.1243-1251
    • /
    • 2007
  • In this paper a study on the simplified observability analysis of GPS/INS is introduced. Errors for the position, velocity, attitude, gyro and accelerometer biases, and lever arm between GPS antenna and inertial sensors are considered in the observablity analysis. From the error dynamics model in which relatively small terms are neglected, simple observability conditions are obtained such that the observability of GPS/INS is determined by the test on the attutude, gyro bias, and lever arm. Unobservable errors for the position, velocity, and accelerometer bias are determined by those for the attitude, gyro bias, and lever arm. The simplified observability conditions are applied to a constant speed horizontal motion. It is shown that there are seven unobservable modes for the motion including the vertical component of gyro bias. The analytic observability analysis results are confirmed with a covariance simulation.

Finite element analysis of effectiveness of lever arm in lingual sliding mechanics (Lingual sliding mechanics의 lever arm 효과에 대한 유한요소분석)

  • Kim, Kyeong-Hee;Lee, Kee-Joon;Cha, Jung-Yul;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.41 no.5
    • /
    • pp.324-336
    • /
    • 2011
  • Objective: The aim of this study was to conduct three-dimensional finite element analysis of individual tooth displacement and stress distribution when a posterior retraction force of 200 g was applied at different positions of the retraction hook on the transpalatal arch (TPA) of a molar, and over different lengths of the lever arm on the maxillary anterior teeth in lingual orthodontics. Methods: A three-dimensional finite element model, including the entire upper dentition, periodontal ligaments, and alveolar bones, was constructed on the basis of a sample (Nissan Dental Product, Kyoto, Japan) survey of Asian adults. Individual movement of the incisal edge and root apex was estimated along the x-, y-, and z-coordinates to analyze tooth displacement and von Mises stress distribution. Results: When the length of the lever arm was 15 mm and 20 mm, the incisal edge and root apex of the anterior teeth was displaced lingually, with a maximum lingual displacement at the lever arm length of 20 mm. When the posterior retraction hook was on the root apex, the molars showed distal displacement. When the length of the lever arm was 20 mm, anterior extrusion was reduced and the crown of the canine displaced toward the buccal side, in which case, the retraction hook was on the edge, rather than at the center, of the TPA. Conclusions: The results of the analysis showed that when 6 anterior teeth were retracted posteriorly, lateral displacement of the canine and lingual displacement of the incisal edge and root apex of the anterior teeth occur without the extrusion of the anterior segment when the length of the lever arm is longer, and the posterior retraction hook is in the midpalatal area.

Driving Performance of Adaptive Driving Controls using Drive-by-Wire Technology for People with Disabilities

  • Kim, Younghyun;Kim, Yongchul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.11-27
    • /
    • 2016
  • Objective: The purpose of this study was to develop and evaluate high technology adaptive driving controls, such as mini steering wheel-lever system and joystick system, for the people with physical disabilities in the driving simulator. Background: The drivers with severe physical disabilities have problems in operation of the motor vehicle because of reduced muscle strength and limited range of motion. Therefore, if the remote control system with driver-by-wire technology is used for adaptive driving controls for people with physical limitations, the disabled people can improve their quality of life by driving a motor vehicle. Method: We developed the remotely controlled driving simulator with drive-by-wire technology, e.g., mini steering wheel-lever system and joystick system, in order to evaluate driving performance in a safe environment for people with severe physical disabilities. STISim Drive 3 software was used for driving test and the customized Labview program was used in order to control the servomotors and the adaptive driving devices. Thirty subjects participated in the study to evaluate driving performance associated with three different driving controls: conventional driving control, mini steering wheel-lever controls and joystick controls. We analyzed the driving performance in three different courses: straight lane course for acceleration and braking performance, a curved course for steering performance, and intersections for coupled performance. Results: The mini steering wheel-lever system and joystick system developed in this study showed no significant statistical difference (p>0.05) compared to the conventional driving system in the acceleration performance (specified speed travel time, average speed when passing on the right), steering performance (lane departure at the slow curved road, high-speed curved road and the intersection), and braking performance (brake reaction time). However, conventional driving system showed significant statistical difference (p<0.05) compared to the mini steering wheel-lever system or joystick system in the heading angle of the vehicle at the completion point of intersection and the passing speed of the vehicle at left turning. Characteristics of the subjects were found to give a significant effect (p<0.05) on the driving performance, except for the braking reaction time (p>0.05). The subjects with physical disabilities showed a tendency of relatively slow acceleration (p<0.05) at the straight lane course and intersection. The steering performance and braking performance were confirmed that there was no statistically significant difference (p>0.05) according to the characteristics of the subjects. Conclusion: The driving performance with mini steering wheel-lever system and joystick control system showed no significant statistical difference compared to conventional system in the driving simulator. Application: This study can be used to design primary controls with driver-by-wire technology for adaptive vehicle and to improve their community mobility for people with severe physical disabilities.

Three dimensional finite element analysis of continuous and segmented arches with use of orthodontic miniscrews (교정용 미니스크류를 이용한 연속호선과 분절호선의 유한요소분석)

  • Lee, Eon-Hwa;Yu, Hyung-Seog;Lee, Kee-Joon;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.41 no.4
    • /
    • pp.237-254
    • /
    • 2011
  • Objective: The purpose of this study was to compare the displacement patterns shown by finite element analysis when the maxillary anterior segment was retracted from different orthodontic miniscrew positions and different lengths of lever arms in lingual continuous and segmented arch techniques. Methods: A three dimensional model was produced, the translation of teeth in both models was measured and individual displacement was calculated. Results: When traction was carried out from miniscrews in the palatal slope, lingual tipping of crowns and extrusion of the maxillary anterior segment were found in both continuous and segmented arches as the lever arms were made shorter. With miniscrews in the midpalatal suture area, the displacement patterns were similar to the palatal slope, but bodily movement of the upper incisors was observed in both continuous and segmented arches with the lever arm at 20 mm. When lever arms were longer, there was less extrusion of the incisors and more buccal displacement of the canines. Such displacement was shown less in the continuous arch than the segmented arch. The second premolar showed crown mesial tipping and intrusion, and the molars showed distal tipping in the continuous arch. The posterior segment was displaced three dimensionally in the segmented arch, but the amount of displacement was less than the continuous arch. Conclusions: It is recommended that lever arms of 20 mm in length be used for bodily movement of the anterior segment. Use of continuous or segmented arches affect the displacement patterns and induce differences in the amount of displacement.

Design of Processor Lever Controller for Electric Propulsion System of Naval Ship (전기추진 함정용 프로세서 레버 제어기 설계)

  • Shim, Jaesoon;Lee, Hunseok;Jung, Sung-Young;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.134-145
    • /
    • 2021
  • It is common to optimize the propulsion control system through a so-called tuning process that modifies the parameter values of the propulsion control software during a ship commissioning. However, during this process, if the error of the initial setting value is large, the tuning time may take too long, or the propulsion equipment can be seriously damaged. Therefore, we conducted research on the design of a propulsion controller that applied a Processor lever controller even for inexperienced people with relatively little experience in tuning propulsion control software to be able to reduce the tuning time while protecting the propulsion system. Through simulation, by comparing the execution result of propulsion control lever commands through the PI controller without applying the Processor lever controller. We analyzed the improvement of the Overshoot and propulsion performance. The simulation results showed that the safety of the propulsion system increased because Overshoot of approximately 9.74%, which occurred when the Processor lever function was not applied.

Comparison of inclination and vertical changes between single-wire and double-wire retraction techniques in lingual orthodontics

  • Hung, Bui Quang;Hong, Mihee;Yu, Wonjae;Kyung, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.50 no.1
    • /
    • pp.26-32
    • /
    • 2020
  • Objective: The Heat Induction Typodont System (HITS), used in some recent studies, has a distinct advantage over previous tooth movement simulation methods. This study aimed to compare inclination and vertical changes between the single-wire and double-wire techniques during en masse retraction with different lengths of lever arms in lingual orthodontics using an upgraded version of the HITS. Methods: Duet lingual brackets, which have two main slots, were used in this study. Forty samples were divided into four groups according to the length of the lever arm (3-mm or 6-mm hook) and the retraction wire (single-wire or double-wire). Four millimeters of en masse retraction was performed using lingual appliances. Thereafter, 3-dimensional-scanned images of the typodont were analyzed to measure inclination and vertical changes of the anterior teeth. Results: Incisor inclination presented more changes in the single-wire groups than in the double-wire groups. However, canine inclination did not differ between these groups. Regarding vertical changes, only the lateral incisors in the single-wire groups presented significantly larger values than did those in the double-wire groups. Combining the effect of hook lengths, among the four groups, the single-wire group with the 3-mm hook had the highest value, while the double-wire group with the 6-mm hook showed the least decrease in crown inclination and extrusion. Conclusions: The double-wire technique with an extended lever arm provided advantages over the single-wire technique with the same lever arm length in preventing torque loss and extrusion of the anterior teeth during en masse retraction in lingual orthodontics.

$H_{\infty}$ filter for flexure deformation and lever arm effect compensation in M/S INS integration

  • Liu, Xixiang;Xu, Xiaosu;Wang, Lihui;Li, Yinyin;Liu, Yiting
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.626-637
    • /
    • 2014
  • On ship, especially on large ship, the flexure deformation between Master (M)/Slave (S) Inertial Navigation System (INS) is a key factor which determines the accuracy of the integrated system of M/S INS. In engineering this flexure deformation will be increased with the added ship size. In the M/S INS integrated system, the attitude error between MINS and SINS cannot really reflect the misalignment angle change of SINS due to the flexure deformation. At the same time, the flexure deformation will bring the change of the lever arm size, which further induces the uncertainty of lever arm velocity, resulting in the velocity matching error. To solve this problem, a $H_{\infty}$ algorithm is proposed, in which the attitude and velocity matching error caused by deformation is considered as measurement noise with limited energy, and measurement noise will be restrained by the robustness of $H_{\infty}$ filter. Based on the classical "attitude plus velocity" matching method, the progress of M/S INS information fusion is simulated and compared by using three kinds of schemes, which are known and unknown flexure deformation with standard Kalman filter, and unknown flexure deformation with $H_{\infty}$ filter, respectively. Simulation results indicate that $H_{\infty}$ filter can effectively improve the accuracy of information fusion when flexure deformation is unknown but non-ignorable.

Damage Pattern and Operation Characteristics of a Thermal Magnetic Type MCCB according to Thermal Stress (열동전자식 MCCB의 열적 스트레스에 따른 소손 패턴 및 작동 특성)

  • Lee, Jae-Hyuk;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.69-73
    • /
    • 2013
  • The purpose of this paper is to analyze the carbonization pattern and operation characteristics of an MCCB. The MCCB is consisted of the actuator lever, actuator mechanism, bimetallic strip, contacts, up and down operator, arc divider or extinguisher, metal operation pin, terminal part, etc. When the actuator lever of the MCCB is at the top or the internal metal operation pin is in contact with the front part, the MCCB is turned on or off. It means trip state if the actuator lever or the internal metal operation pin moves to back side. In the UL 94 vertical combustion test, white smoke occurred from the MCCB when an average of 17~24 seconds elapsed after the MCCB was ignited and black smoke occurred when an average of 45~50 seconds elapsed. It took 5~6 minutes for the MCCB surface to be half burnt and took an average of 8~9 minutes for the MCCB surface to be entirely burnt. In the UL 94 test, the MCCB trip device operated when an average 7~8 minutes elapsed. If the MCCB trip has occurred, it may have been caused by an electrical problem such as a short-circuit, overcurrent, etc., as well as fire heat. From the entire part combustion test according to KS C 3004, it was found that the metal operation pin could be moved to the MCCB trip position without any electrical problems.