• Title/Summary/Keyword: level of error

Search Result 2,493, Processing Time 0.03 seconds

Protection Algorithm for Error Prone Bit Positions of Turbo Codes (터보 부호의 오류 취약 비트 보완 알고리듬)

  • Wangrok Oh;Kyungwhoon Cheun;Kim, Jinwoo;Kyeongcheol Yang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7A
    • /
    • pp.775-780
    • /
    • 2004
  • In this paper, we propose a simple protection scheme for error prone bit positions of turbo codes using the error detection capability of the CRC, which is almost always employed in practical systems. The proposed scheme based on bit flipping with CRC offers flexibility on selecting the level of protection. Also, not having send additional parity bits or discarding useful bit positions, it offers the best error performance for a given level of protection.

The Error Rate Performance of APK System in the Presence of Interference and Noise (간섭과 잡음의 존재하에서 APK 시스템의 오율 특성)

  • Chae, Jong-Won;Gong, Byeong-Ok;Jo, Seong-Jun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.3
    • /
    • pp.66-72
    • /
    • 1984
  • In this paper, the error rate performance of L-level amplitude shift keying (ASK), M-ary phase shift keying (PSK) and amplitude phase keying (APK) systems have been studied in the presence of interference and noise. Using the derived error probability equations, the error rate performance of each L-level ASK and M-ary PSK system has been evaluated in terms of carrier-to-noise power ratio (CNR), carrier-to-interferer power ratio (CIR), and envelope distribution of interferer. These results are combined and then the error rate performance of APK signal has been found. Finally, the error rate performance is compared and discussed.

  • PDF

QAM Error Performance in the Environment of Cochannel Interference and Impulsive Noise (동일채널간섭 및 임펄스잡음 환경하에서의 QAM신호의 오율특성)

  • 제종원;공병옥;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.7 no.4
    • /
    • pp.167-172
    • /
    • 1982
  • We have studied and discussed the error rate performance of Quadrature Amplitude Modulation(QAM) in an environment of cochannel QAM interference and impulsive noise. A general equation of error probability for L-level QAM signal has been derived and the error rate of the 16-QAM signal, as an example, has been calculated as functions of carrier-to-noise power ratio(CNR), carrier-to-interferer power ratio(CIR), impulsive indes, and the phase difference between signal and interferer.

  • PDF

Ship Radiated Noise Measurement Methods and Accuracy Analysis (선박 방사소음의 측정방법 및 정확도 해석)

  • Lee, Phil-Ho;Yoon, Jong-Rak
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.738-748
    • /
    • 2005
  • The ship radiated noise level fluctuates by the difference of interference and reverberation according to measurement methods and environmental conditions. These phenomena cause error of the source level estimation even in the same environment conditions. This paper describes a quantitative analysis and a reduction method for an error value to the source level estimation in spatial and temporal interference environment. The design criteria of the radiated noise measurement array composed of omni-directional hydrophones and the source level accuracy in the deep water range are given. The source level accuracy in the shallow water range is also derived based on the statistical model of the multiple reflection paths. The results are verified using the water tank experiment and the sea trial.

A Study on Comparison of the Characteristic Test of Discharge Water Flowmeters (Electromagnetic Flowmeter, Parshall Flume) (방류수 유량계(전자기유량계, 파샬플룸)의 특성평가 연구)

  • An, Yang-ki;Kim, Jee-young;Kim, Kum-hee;Jang, Hee-soo;Jung, Jung-pil;Choi, Jong-woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.57-62
    • /
    • 2015
  • The test of comparing liquid flow calibration system (approved by KOLAS) for accuracy and structure change test was performed in the test bed in order to evaluate the typical characteristics of the electromagnetic flow meters and parshall flume that are generally used in the water discharging facilities. The results of the accuracy comparing test with liquid flow calibration system showed the error of less than 2%. Pharshall plume got error up to -8.3% (low flow) from the flow rate test, but less than 4% from the accumulated flow test because of offset error at high flow rate and low flow rate. Evaluation of structual change test was tested with only parshall flume using structure and it consisted of installation angle (parshall flume and level sensor) and position change. Installation angle, water level sensor angle and position changing test for parshall flume had errors of 3.1%~-9.2%, 0.4%~-5.6% and 0.2%~1.3% respectively. Especially, the error showed the largest increase when the water level sensor measured the point of decreased flow by the structure change. Therefore, error factors (change of straight pipe length, installation of obstacle or effect of foreign substances on water level sensor) that can often occur in the field should be derived and the research for optimized installation method should be carried out continuously.

Influence of Impulsive Random Noise on Digital Modulation Systems in Electromagnetic Interference Environments (전자간섭 환경하에서 임펄스성 랜덤잡음이 디지틀 변조방식에 미치는 영향)

  • 조성준;공병옥
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.10 no.1
    • /
    • pp.17-30
    • /
    • 1985
  • The error rate performances of digital modulation systems in fluenced by impulsive noise have been investigated and discussed in the enviroment of electromagnetic interference(EMI). Using the derived equations for the probabilities of error of L-level ASK, M-ary PSK, MSK, QAM, and APK signals, the error rate performance of each system has been evaluated and compared each other. The results show that, in the case of gaussian noise enviornment, PSK system is superior to the other systems and the digital amplitude modulation systems are inferior on the contrary. In the environment of impulsive noise, the MSK at low interfere level shows the best error rate performance but in the high level interferer environment, the PSK shows the best error rate performance. Also it is known that the digital amplitude modulation systems are scarcely influenced by the variation of interfere level.

A Study on Countermeasure Strategy on Risk of Human Errors driven by Advanced and Automated Systems Through Consideration of Related Theories (현대의 고도화, 자동화된 시스템이 파생한 휴먼에러에 관한 이론적 고찰을 통한 리스크 대응전략 설정)

  • Shin, In Jae
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.86-92
    • /
    • 2014
  • This paper provides an integrated view on human and system interaction in advanced and automated systems, which adopting computerized multi-functional artifacts and complicated organizations, such as nuclear power plants, chemical plants, steel and semi-conduct manufacturing system. As current systems have advanced with various automated equipments but human operators from various organizations are involved in the systems, system safety still remains uncertain. Especially, a human operator plays an important role at the time of critical conditions that can lead to catastrophic accidents. The knowledge on human error helps a risk manager as well as a designer to create and control a more credible system. Several human error theories were reviewed and adopted for forming the integrated perspective: gulf of execution and evaluation; risk homeostasis; the ironies of automation; trust in automation; design affordance; distributed cognition; situation awareness; and plan delegation theory. The integrated perspective embraces human error theories within three levels of human-system interactions such as affordance level, psychological logic level and trust level. This paper argued that risk management process should dealt with human errors by providing (1) reasoning improvement; (2) support to situation awareness of operators; and (3) continuous monitoring on harmonization of human system interaction. This approach may help people to understand risk of human-system interaction failure characteristics and their countermeasures.

A Modified Decision-Directed LMS Algorithm (수정된 DD LMS 알고리즘)

  • Oh, Kil Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.3-8
    • /
    • 2016
  • We propose a modified form of the decision-directed least mean square (DD LMS) algorithm that is widely used in the optimization of self-adaptive equalizers, and show the modified version greatly improves the initial convergence properties of the conventional algorithm. Existing DD LMS regards the difference between a equalizer output and a quantization value for it as an error, and achieves an optimization of the equalizer based on minimizing the mean squared error cost function for the equalizer coefficients. This error generating method is useful for binary signal or a single-level signals, however, in the case of multi-level signals, it is not effective in the initialization of the equalizer. The modified DD LMS solves this problem by modifying the error generation. We verified the usefulness and performance of the modified DD LMS through experiments with multi-level signals under distortions due to intersymbol interference and additive noise.

Multi-Level Rotation Sampling Designs and the Variances of Extended Generalized Composite Estimators

  • Park, You-Sung;Park, Jai-Won;Kim, Kee-Whan
    • Proceedings of the Korean Association for Survey Research Conference
    • /
    • 2002.11a
    • /
    • pp.255-274
    • /
    • 2002
  • We classify rotation sampling designs into two classes. The first class replaces sample units within the same rotation group while the second class replaces sample units between different rotation groups. The first class is specified by the three-way balanced design which is a multi-level version of previous balanced designs. We introduce an extended generalized composite estimator (EGCE) and derive its variance and mean squared error for each of the two classes of design, cooperating two types of correlations and three types of biases. Unbiased estimators are derived for difference between interview time biases, between recall time biases, and between rotation group biases. Using the variance and mean squared error, since any rotation design belongs to one of the two classes and the EGCE is a most general estimator for rotation design, we evaluate the efficiency of EGCE to simple weighted estimator and the effects of levels, design gaps, and rotation patterns on variance and mean squared error.

  • PDF

PWM-Based Sliding Mode Controller for Three-Level Full-Bridge DC-DC Converter that Eliminates Static Output Voltage Error

  • Liu, Jilong;Xiao, Fei;Ma, Weiming;Fan, Xuexin;Chen, Wei
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.378-388
    • /
    • 2015
  • This paper proposes a pulse width modulation (PWM)-based sliding mode controller (SMC) for a full-bridge DC-DC converter that can eliminate static output voltage error. Hysteretic SMC in DC-DC converter does not have a fixed switching frequency, and applying hysteretic SMC to full-bridge converters is difficult. Fixed-frequency SMC, which is also called PWM-based SMC, based on equivalent control overcomes these shortcomings. However, the controller order reduction in equivalent control in PWM-based SMC causes static output voltage error. To resolve this issue, an integral item is added to the PWM-based SMC. Sliding mode coefficients are designed by applying a standard second-order system to the sliding mode surface. The effect of adding an integral item on the controller is analyzed, and an integral coefficient design method is proposed. Experiment results on a three-level full-bridge DC-DC converter verify the control scheme and design method proposed in this paper.