DOI QR코드

DOI QR Code

A Modified Decision-Directed LMS Algorithm

수정된 DD LMS 알고리즘

  • Oh, Kil Nam (Dept. of Healthcare &Medical Engineering, Gwangju University)
  • 오길남 (광주대학교 보건의료공학과)
  • Received : 2015.09.20
  • Accepted : 2016.07.07
  • Published : 2016.07.25

Abstract

We propose a modified form of the decision-directed least mean square (DD LMS) algorithm that is widely used in the optimization of self-adaptive equalizers, and show the modified version greatly improves the initial convergence properties of the conventional algorithm. Existing DD LMS regards the difference between a equalizer output and a quantization value for it as an error, and achieves an optimization of the equalizer based on minimizing the mean squared error cost function for the equalizer coefficients. This error generating method is useful for binary signal or a single-level signals, however, in the case of multi-level signals, it is not effective in the initialization of the equalizer. The modified DD LMS solves this problem by modifying the error generation. We verified the usefulness and performance of the modified DD LMS through experiments with multi-level signals under distortions due to intersymbol interference and additive noise.

자기적응 등화기의 최적화에 널리 사용되는 판정의거(decision-directed: DD) least mean square(LMS) 알고리즘의 수정된 형태를 제안하고, 수정된 형태가 기존 알고리즘의 초기 수렴 특성을 크게 개선함을 보인다. 기존 DD LMS는 등화기 출력과 그에 대한 양자화 값의 차이를 오차로 간주하고, 오차의 제곱을 비용 함수로 하여 등화기 계수에 대해 이를 최소화함으로써 등화기의 최적화를 달성한다. 이 오차 발생 방법은 이진 신호 또는 단일레벨 신호에 유용하나, 다치레벨 신호의 경우 등화기의 초기화에는 효과적이지 못하다. 수정된 DD LMS에서는 오차 발생을 수정하여 이 문제를 해결하였다. 다치레벨 신호를 대상으로 한 모의실험을 통해 심볼간 간섭에 의한 왜곡과 부가 잡음 하에서 수정된 DD LMS의 유용성과 성능을 검증하였다.

Keywords

References

  1. R.W. Lucky, "Techniques for adaptive equalization of digital communication systems," Bell System Tech. J., vol. 45, no. 2, pp. 255-286, Feb. 1966. https://doi.org/10.1002/j.1538-7305.1966.tb00020.x
  2. B. Widrow and M.E. Hoff, Jr., "Adaptive switching circuits," IRE WESCON Convention Record, Pt. 4, pp. 96-104. Aug. 1960.
  3. B. Widrow, J.R. Glover, Jr., J.M. McCool, J. Kaunitz, C.S. Williams, R.H. Hearn, J.R. Zeidler, E. Dong, Jr., and R.C. Goodlin, "Adaptive noise cancelling: Principles and applications," Proc. IEEE, vol. 63, no. 12, pp. 1692-1716, Dec. 1975. https://doi.org/10.1109/PROC.1975.10036
  4. B. Widrow and S.D. Stearns, Adaptive signal processing, Englewood Cliffs, NJ: Prentice-Hall, 1985.
  5. R.W. Lucky, J. Salz, and E.J. Weldon, Principles of data communication, New York: McGraw-Hill, 1968.
  6. S. Haykin, ed., Unsupervised adaptive filtering volume 2: Blind deconvolution, New York: John Wiley & Sons, 2000.
  7. J.R. Treichler, C. Richard Johnson, and M.G. Larimore, Theory and design of adaptive filters, New York: John Wiley & Sons, 1987.
  8. B. Widrow, J. McCool, and M. Ball, "The complex LMS algorithm," Proc. IEEE, vol. 63, no. 4, pp. 719-720, Apr. 1975. https://doi.org/10.1109/PROC.1975.9807
  9. D.N. Godard, "Self-recovering equalization and carrier tracking in two-dimensional data communication systems," IEEE Trans. Commun., vol. 28, no. 11, pp. 1867-1875, Nov. 1980. https://doi.org/10.1109/TCOM.1980.1094608
  10. G. Picchi and G. Prati, "Blind equalization and carrier recovery using a "Stop-and-Go" decision-directed algorithm," IEEE Trans. Commun., vol. 35, no. 9, pp. 877-887, Sep. 1987. https://doi.org/10.1109/TCOM.1987.1096877
  11. D. Hatzinakos and C.L. Nikias, "Estimation of multipath channel response in frequency selective channels," IEEE J. Selected Areas in Communications, vol. 7, no. 1, pp. 12-19, Jan. 1989. https://doi.org/10.1109/49.16839