• Title/Summary/Keyword: level ice

Search Result 262, Processing Time 0.02 seconds

Further study on level ice resistance and channel resistance for an icebreaking vessel

  • Hu, Jian;Zhou, Li
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.2
    • /
    • pp.169-176
    • /
    • 2016
  • In this paper, further research is carried out to investigate the resistance encountered by an icebreaking vessel travelling through level ice and channel ice at low speed range. The present paper focuses on experimental and calculated ice resistances by some empirical formulas in both level ice and channel ice. In order to achieve the research, extra model tests have been done in an ice basin. Based on the measurements from model test, it is found that there exists a relationship between ice resistance, minimum ice load, maximum ice load and the standard deviation of ice load for head on operation in level ice. In addition, both level ice resistance and channel ice resistance are calculated and compared with model test results.

Numerical simulation of dynamic Interactions of an arctic spar with drifting level ice

  • Jang, H.K.;Kang, H.Y.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.6 no.4
    • /
    • pp.345-362
    • /
    • 2016
  • This study aims to develop the numerical method to estimate level ice impact load and investigate the dynamic interaction between an arctic Spar with sloped surface and drifting level ice. When the level ice approaches the downward sloped structure, the interaction can be decomposed into three sequential phases: the breaking phase, when ice contacts the structure and is bent by bending moment; the rotating phase, when the broken ice is submerged and rotated underneath the structure; and the sliding phase, when the submerged broken ice becomes parallel to the sloping surface causing buoyancy-induced fictional forces. In each phase, the analytical formulas are constructed to account for the relevant physics and the results are compared to other existing methods or standards. The time-dependent ice load is coupled with hull-riser-mooring coupled dynamic analysis program. Then, the fully coupled program is applied to a moored arctic Spar with sloped surface with drifting level ice. The occurrence of dynamic resonance between ice load and spar motion causing large mooring tension is demonstrated.

Ice forces acting on towed ship in level ice with straight drift. Part I: Analysis of model test data

  • Zhou, Li;Chuang, Zhenju;Ji, Chunyan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.1
    • /
    • pp.60-68
    • /
    • 2018
  • A series of tests in an ice tank was carried out using a model-scale ship to investigate the ice loading process. The ship model Uikku was mounted on a rigid carriage and towed through a level ice field in the ice tank of the Marine Technology Group at Aalto University. The carriage speed and ice thickness were varied. In this paper, ice loading process was described and the corresponding ice forces on the horizontal plane were analysed. A new method is proposed to decompose different ice force components from the total ice forces measured in the model tests. This analysis method is beneficial to understanding contributions of each force component and modelling of ice loading on hulls. The analysed experimental results could be used for comparison with further numerical simulations.

Dynamics of moored arctic spar interacting with drifting level ice using discrete element method

  • Jang, HaKun;Kim, MooHyun
    • Ocean Systems Engineering
    • /
    • v.11 no.4
    • /
    • pp.313-330
    • /
    • 2021
  • In this study, the dynamic interaction between an Arctic Spar and drifting level ice is examined in time domain using the newly developed ice-hull-mooring coupled dynamics program. The in-house program, CHARM3D, which is the hull-riser-mooring coupled dynamic simulator is extended by coupling with the open-source discrete element method (DEM) simulator, LIGGGHTS. In the LIGGGHTS module, the parallel-bonding method is implemented to model the level ice using an assembly of multiple bonded spherical particles. As a case study, a spread-moored Artic Spar platform, whose hull surface near waterline is the inverted conical shape, is chosen. To determine the breaking-related DEM parameter (the critical bonding strength), the four-point numerical bending test is used. A series of numerical simulations is systematically performed under the various ice conditions including ice drift velocity, flexural strength, and thickness. Then, the effects of these parameters on the ice force, platform motions, and mooring tensions are discussed. The simulations reveal various features of dynamic interactions between the drifting ice and moored platform for various ice conditions including the novel synchronous resonance at low ice speed. The newly developed simulator is promising and can repeatedly be used for the future design and analysis including ice-floater-mooring coupled dynamics.

A Study on the Simulation of the Ship in Level Ice (평탄방에서 선박의 모의실험에 관한 연구)

  • 박명규;고상용
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.4
    • /
    • pp.23-31
    • /
    • 1994
  • A theoretical scaling was made in order to acquire the ice resistance of ships in level ice. Ice resistance of ice-breaker Ermak was calculated by Kashteljan eequation and it's model test results were compared with full-scale measurements. Atkins's ice number and Norman Jones's dimensionless numbers were investigated and discussed.

  • PDF

A numerical study on ice failure process and ice-ship interactions by Smoothed Particle Hydrodynamics

  • Zhang, Ningbo;Zheng, Xing;Ma, Qingwei;Hu, Zhenhong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.796-808
    • /
    • 2019
  • In this paper, a Smoothed Particle Hydrodynamics (SPH) method is extended to simulate the ice failure process and ice-ship interactions. The softening elastoplastic model integrating Drucker-Prager yield criterion is embedded into the SPH method to simulate the failure progress of ice. To verify the accuracy of the proposed SPH method, two benchmarks are presented, which include the elastic vibration of a cantilever beam and three-point bending failure of the ice beam. The good agreement between the obtained numerical results and experimental data indicates that the presented SPH method can give the reliable and accurate results for simulating the ice failure progress. On this basis, the extended SPH method is employed to simulate level ice interacting with sloping structure and three-dimensional ice-ship interaction in level ice, and the numerical data is validated through comparing with experimental results of a 1:20 scaled Araon icebreaker model. It is shown the proposed SPH model can satisfactorily predict the ice breaking process and ice breaking resistance on ships in ice-ship interaction.

Ice forces acting on towed ship in level ice with straight drift. Part II: Numerical simulation

  • Zhou, Li;Chuang, Zhenju;Bai, Xu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.119-128
    • /
    • 2018
  • A numerical method is proposed to simulate level ice interaction with ship in transverse and longitudinal directions in time domain. A novel method is proposed to simulate non-symmetric transverse force in a stochastic way. On the basis of observations from the model tests, the simulation of longitudinal force combines the ice bending force acting on the waterline, submersion force below the waterline and ice friction forces caused by transverse force and ice floes rotation amidships. In the simulations the ship was fixed and towed through an intact ice sheet at a certain speed. The setup of the numerical simulation is similar to the ice tank setup as much as possible. The simulated results are compared with model tests data and the results show good agreement with the measurement.

북극항로 운항 선박의 빙해역 운항 속도 추정에 관한 연구

  • Kim, Hyeon-Su;Han, Dong-Hwa;Ozden, Ali Erinc
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.177-180
    • /
    • 2018
  • As ships operating on the Arctic route are exposed to various ice environments such as level ice, pre-swan, pack ice, ice ridge and brash ice, it is essential to estimate the ice resistance according to the ice environment. Methods for estimating the ice resistance include a method using mathematical model, numerical simulation, and a method using empirical formula. In this study, empirical formulas are used to estimate the ice resistance. The purpose of this study is to develop the ice resistance and attainable speed estimation program(I-RES) for various ice environments.

  • PDF

A Study on Plate Bending Analysis Using Boundary Element Method

  • Son, Jae-hyeon;Kim, Yooil
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.232-242
    • /
    • 2022
  • This study presents a method for level ice-structure interaction analysis to estimate the fatigue damage of arctic structures by applying plate theory to the behavior of level ice. The boundary element method (BEM), which incurs a lower computational cost than the finite element method (FEM), was introduced to solve the plate bending problem. The BEM formulation was performed by applying the BEM to plate theory. Finally, to check the validity of the proposed method, the BEM results and FEM results obtained using the ABAQUS commercial software were compared. The response results of the BEM analysis agreed well with those of the FEM analysis. Based on the results of the analysis, the BEM approach is considered to be very powerful in level ice-structure interaction analysis for estimating level ice-induced fatigue damage. Further work is being conducted to perform level ice fracture analysis based on the stress field calculated using the boundary element method.

Speed Trial Analysis of Korean Ice Breaking Research Vessel 'Araon' on the Big Floes (큰 빙판에서 아라온 호 쇄빙 속도 성능 해석)

  • Kim, Hyun Soo;Lee, Chun-Ju;Choi, Kyungsik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.478-483
    • /
    • 2012
  • The speed performances of ice sea trial on the Arctic(2010 & 2011) area were shown different results depend on the ice floe size. Penetration phenomena of level ice was not happened on medium ice floe and tore up by the impact force because the mass of medium ice floe is similar to the mass of Araon which is Korean ice breaking research vessel and did not shut up by the ice ridge or iceberg. The sea trial on the Amundsen sea was performed at the big floe which is classified by WMO(World Meteorological Organization). Three measurements of ice properties and five results of speed trial were obtained with different ice thicknesses and engine powers. To evaluate speed of level ice trial and model test results at the same ice thickness and engine power, the correction method of HSVA(Hamburg Ship Model Basin) was used. The thickness, snow effect, flexural strength and friction coefficient were corrected to compare the speed of sea trial. The analyzed speed at 1.03m thickness of big floe was 5.85 knots at 10MW power and it's 6.10 knots at 1.0m ice thickness and the same power. It's bigger than the results of level ice because big floe was also slightly tore up by the impact force of vessel based on the observation of recorded video.