• Title/Summary/Keyword: lesson video analysis

Search Result 37, Processing Time 0.024 seconds

An analysis of characteristics on elementary teachers' noticing in fraction division lessons (분수의 나눗셈 수업에 대한 초등교사의 노티싱 특징 분석)

  • Sunwoo, Jin
    • Education of Primary School Mathematics
    • /
    • v.27 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • Teachers' ability to notice is a crucial indicator of their instructional expertise. Despite the significance of this ability, research in mathematics teacher education has predominantly focused on the noticing of preservice teachers, with limited exploration into the noticing abilities of experienced in-service teachers. This study addresses this gap by examining the noticing characteristics of in-service elementary teachers actively developing their competency in elementary mathematics education. For this purpose, 23 elementary school teachers were asked to complete an analysis sheet while viewing the mathematics lesson video depicting on the concept of (fraction)÷(natural number), allowing us to scrutinize their attending, interpreting, and responding skills in detail. The study's results revealed that teachers demonstrated a tendency to attend mathematically significant aspects related to the teaching of fraction division. They interpreted the observed phenomena through the lens of fraction division's instructional principles, proposing specific pedagogical alternatives. These findings offer valuable insights for mathematics teacher education research.

Exploring a Teacher's Argumentation-Specific Pedagogical Content Knowledge Identified through Collaborative Reflection and Teaching Practice for Science Argumentation (협력적 성찰과 과학 논변수업 실행에서 드러난 교사의 논변특이적 PCK 탐색)

  • Kim, Suna;Lee, Shinyoung;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.6
    • /
    • pp.1019-1030
    • /
    • 2015
  • This study examined the development of a teacher's teaching practice and identified argumentation-specific pedagogical content knowledge (PCK) and the influence of the argumentation-specific PCK on teaching practice in an argumentation classroom. The teacher has a Ph.D degree in science education, a 19-year teaching career, and no experience in instructing in an argumentation classroom. The developed program consists of nine lessons regarding photosynthesis for 7th graders. The teacher participated in a collaborative reflection with researchers after each lesson once a week and five times in total, which lasted for thirty minutes. All of the lessons were video- and audio-recorded and the transcript of lessons and collaborative reflection, pre- and post-survey related to argumentation, and researchers' journals were analyzed. Analysis of the data showed that the teacher emphasized group interaction showing utterances of listening, evaluating arguments, counter-arguing/debating, and reflecting on argument process after the fourth lesson although the teacher focused on individual argumentation showing utterances of talking, knowing meaning of argument, and justifying with evidence in the first three lessons. Also, the argumentation-specific PCK, which was identified with the understanding of students, nature of argumentation and argumentation task strategy, also influenced the development of teaching practice. The teacher comprehended the students' challenges in argumentation, developed her understanding of the nature of argumentation from an individual plane to social plane, and demonstrated a deep understanding of the task strategy by voluntarily joining in modifying the argumentation tasks.

A Study on Construction of Multiplication Knowledge with Low Reasoning Ability (추론 능력이 열등한 초등학교 2학년 학생의 곱셈 지식 구성 능력에 관한 연구)

  • Lee, So-Min;Kim, Jin-Ho
    • Journal of the Korean School Mathematics Society
    • /
    • v.12 no.1
    • /
    • pp.47-70
    • /
    • 2009
  • The purpose of this research was to confirm one of constructivists' assumptions that even children 조o are with low reasoning ability can make reflective abstracting ability and cognitive structures by this ability can make generation ability of new knowledge by themselves. To investigate the assumption, learner-centered instruction were implemented to 2nd grade classroom located in Suseong Gu, DaeGu City and with lesson plans which initially were developed by Burns and corrected by the researchers. Recordings videoed using 2 video cameras, observations, instructions, children's activity worksheets, instruction journals were analyzed using multiple tests for qualitative analysis. Some conclusions are drawn from the results. First, even children with low reasoning ability can construct mathematical knowledge on multiplication in their own. ways, Thus, teachers should not compel them to learn a learning lesson's goals which is demanded in traditional instruction, with having belief they have reasoning ability. Second, teachers need to have the perspectives of respects out of each child in their classroom and provide some materials which can provoke children's cognitive conflict and promote thinking with the recognition of effectiveness of learner-centered instruction. Third, students try to develop their ability of reflective and therefore establish cognitive structures such as webs, not isolated and fragmental ones.

  • PDF

Changes in the Teaching Expertise of Teachers Participating in an In-School Professional Learning Community for Elementary Science Instructional Research (초등과학 수업 연구를 위한 학교 안 전문적 학습공동체 참여 교사들의 수업 전문성 변화 양상)

  • Kim, Eun Seo;Lee, Sun-Kyung
    • Journal of Korean Elementary Science Education
    • /
    • v.43 no.1
    • /
    • pp.185-200
    • /
    • 2024
  • This study explored the changes in the elementary science teaching expertise of teachers who participated in an in-school professional learning community for elementary science instructional research. Six elementary school teachers from grades 4, 5, and 6 at an 18-class S elementary school in a medium-sized city in Chungcheongbuk-do conducted collaborative instructional research on elementary science lessons as part of an in-school professional learning community, which was held 26 times over 7 months in 2020. During the professional learning community, video and audio recordings of the activities, research lessons, course materials, and professional learning community reflection activities were collected for analysis. The collected data were analyzed using qualitative research methods; data processing, reading, note-taking, description, classification, interpretation, reporting, and visualization; and the instructional professionalism elements were extracted based on the instructional professionalism framework. In the early professional learning community activity stages, the participating teachers first discussed their teaching perspectives, their experiences, and their goals for teaching science, which resulted in a selection of research questions. The teachers then collaboratively designed and implemented research lessons for each grade level, after which lesson reflections were conducted. The teachers' abilities to engage in qualitative reflection on the research questions improved after each reflection iteration. It was found that this professional learning community collaborative lesson study experience positively contributed to teaching expertise development. Based on the study findings, the implications for using professional learning communities to improve elementary teachers' science teaching expertise are given.

Case Study of Mathematical Pedagogy for Prospective Elementary Teachers in the US (미국의 초등 예비교사를 위한 수학 교수법에 관한 사례 연구)

  • Pang, Jeong-Suk
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.15 no.3
    • /
    • pp.487-507
    • /
    • 2011
  • Despite the recent increased attention to mathematics teacher education there have been lack of empirical studies on how to teach teachers. A study of mathematics instruction for prospective teachers can be conducted either by a teacher educator's critical reflection on her teaching or by observation of others' teaching practices. This paper was from the author's observation of a mathematics instruction course for future elementary teachers at the University of California at Irvine. As such this paper described in detail how the course was implemented throughout the quarter and drew implications for a teacher preparation program in Korea. As the course had a specific purpose of promoting future teachers' expertise in mathematics instruction and employed various strategies that were different from a typical university course, this paper is expected to provide teacher educators with the insight of an alternative teaching style and to provoke discussion of how to connect theory to practice for effective teacher education.

  • PDF

Interactions among Components of Pedagogical Content Knowledge of Science Teachers in a Teacher Learning Community (교사학습공동체 과학 교사의 PCK 요소 간 상호작용)

  • Yang, Jungeun;Choi, Aeran
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.1
    • /
    • pp.15-30
    • /
    • 2022
  • The purpose of this study was to examine interactions among components of pedagogical content knowledge of middle school science teachers in a teacher learning community targeting science practice-based instruction. Data collection consisted of pre and post questionnaire and interview with each of five science teachers, audio-recording of teacher discussion in a teacher learning community, lesson plans, teacher written reflection, and video-recording of teaching practice. Qualitative data analysis revealed that there were two types of interactions, i.e., one-way interaction and two-ways interaction among components of pedagogical content knowledge of science teachers in a teacher learning community. There were also consecutive interactions as well as one-shot interaction. For two-ways interaction there were synchronous two-ways interaction in a teacher learning community meeting as well as consecutive two-ways interaction along with several meetings. This study provides implications that collaborative learning context in a teacher learning community should stimulate various types interactions among components of pedagogical content knowledge.

Case Studies of the Participation Structures in Secondary Science Classrooms: Exploring the Possibility to Develop the 'Space for Hybrid Meaning Making' (중등 과학 수업의 참여구조 사례 연구: '혼성적 의미 창출 공간'의 형성 가능성 탐색)

  • Yu, Eun-Jeong;Lee, Sun-Kyung;Oh, Phil-Seok;Shin, Myeong-Kyeong;Kim, Chan-Jong
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.6
    • /
    • pp.603-617
    • /
    • 2008
  • Inspired by the socio-cultural perspective on teaching and learning science, we have explored how the teacher and students interact with one another and develop meanings in science classrooms. Data came from four 10th grade science classrooms, and video recordings and verbatim transcripts of the lessons were analyzed. Focus of the analysis was on the participation structures as well as the possibility of developing the space for hybrid meaning making. The participation structures identified were mainly teacher-led, and students rarely took an active stance to initiate an opportunity for generating new meanings. However, some participation structures had the potential to develop a new discursive space in which hybrid meaning can be constructed through negotiation between participants. Implications for future research and more desirable educational practices were discussed based on the result.

Developing an Instrument for Analysing Students' Behavioral Engagement in School Science Classroom (과학수업에서 나타나는 학생들의 행동적 참여 분석을 위한 영상 분석 도구의 개발)

  • Choi, Joonyoung;Na, Jiyeon;Song, Jinwoong
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.2
    • /
    • pp.247-258
    • /
    • 2015
  • Students are engaged in classroom learning, and classroom learning occurs not only through conversation but also through nonverbal behavior. In science classrooms especially, there are meaningful nonverbal behaviors such as practical activities like observation and measurement. But these behaviors have not been properly investigated by existing instruments that try to measure students' engagement. This study aims to develop a new instrument for analyzing students' behavioral engagement especially in science classrooms. The method of developing the instrument was structured along three steps. First, student behaviors have been classified into fourteen categories through literature review and a series of observation of elementary science classroom. Second, based on these, a framework for analyzing student behavioral engagement has been developed. With the framework, every student moment could be labeled as Participatory Speech or Participatory Silence or Non-Participatory Speech or Non-Participatory Silence. Third, an instrument to which the framework is applied has been developed by using Microsoft Excel. As a trial, two fourth-grade students in elementary science class were analyzed with this instrument. The results of the trial analysis shows that the longest period of a science lesson was occupied by Participatory Silence (63% and 72%). Among the participatory silence, 'listening' was the most common (51% and 42% of the trial lesson) and 'observing' which is a specific behavior to science was the fourth position (17% and 17% of the trial lesson). It is expected that the developed instrument could be used in improving our understanding of the patterns of student engagement in science classrooms.

Pre-service mathematics teachers' noticing competency: Focusing on teaching for robust understanding of mathematics (예비 수학교사의 수학적 사고 중심 수업에 관한 노티싱 역량 탐색)

  • Kim, Hee-jeong
    • The Mathematical Education
    • /
    • v.61 no.2
    • /
    • pp.339-357
    • /
    • 2022
  • This study explores pre-service secondary mathematics teachers (PSTs)' noticing competency. 17 PSTs participated in this study as a part of the mathematics teaching method class. Individual PST's essays regarding the question 'what effective mathematics teaching would be?' that they discussed and wrote at the beginning of the course were collected as the first data. PSTs' written analysis of an expert teacher's teaching video, colleague PSTs' demo-teaching video, and own demo-teaching video were also collected and analyzed. Findings showed that most PSTs' noticing level improved as the class progressed and showed a pattern of focusing on each key aspect in terms of the Teaching for Robust Understanding of Mathematics (TRU Math) framework, but their reasoning strategies were somewhat varied. This suggests that the TRU Math framework can support PSTs to improve the competency of 'what to attend' among the noticing components. In addition, the instructional reasoning strategies imply that PSTs' noticing reasoning strategy was mostly related to their interpretation of noticing components, which should be also emphasized in the teacher education program.

An Analysis on Teachers' Behaviors in Problem Presenting and Solving Activities in Elementary Mathematics Class (초등수학수업의 과제제시 및 해결활동에서 나타나는 교사의 행동 분석)

  • Lee, Yun-Mi;Kang, Wan
    • Education of Primary School Mathematics
    • /
    • v.11 no.2
    • /
    • pp.121-139
    • /
    • 2008
  • This study analyzed problem presenting and solving activities in elementary school mathematics class to enhance insights of teachers in class for providing real meaning of learning. Following research problems were selected to provide basic information for improving to sound student oriented lesson rather than teacher oriented lessons. Protocols were made based on video information of 5th grade elementary school 'Na' level figure and measurement area 3. Congruence of figures, 4. Symmetry of figures, and 6. Areas and weight. Protocols were analyzed with numbering, comment, coding and categorizing processes. This study is an qualitative exploratory research held toward three teachers of 5th grade for problem solving activities analysis in problem presenting method, opportunity to providing method to solve problems and teachers' behavior in problem solving activities. Following conclusions were obtained through this study. First, problem presenting method, opportunity providing method to solve problems and teachers' behavior in problem solving activities were categorized in various types. Second, Effective problem presenting methods for understanding in mathematics problem solving activities are making problem solving method questions or explaining contents of problems. Then the students clearly recognize problems to solve and they can conduct searches and exploratory to solve problems. At this point, the students understood fully what their assignments were and were also able to search for methods to solve the problem. Third, actual opportunity providing method for problem solving is to provide opportunity to present activities results. Then students can experience expressing what they have explored and understood during problem solving activities as well as communications with others. At this point, the students independently completed their assignments, expressed their findings and understandings in the process, and communicated with others. Fourth, in order to direct the teachers' changes in behaviors towards a positive direction, the teacher must be able to firmly establish himself or herself as a teaching figure in order to promote students' independent actions.

  • PDF