• Title/Summary/Keyword: lenticular 3D display

Search Result 27, Processing Time 0.026 seconds

Optical Analysis for the Autostereoscopic Display with a Lenticular Array Using Finite Ray Tracing (유한광선추적을 이용한 렌티큘러 렌즈 기반 3차원 디스플레이 장치의 해석)

  • Kim, Bong-Sik;Kim, Keon-Woo;Choi, Da-Shin;Park, Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.162-166
    • /
    • 2014
  • We propose an analysis method of an autostereoscopic display system with lenticular lens array using finite ray-tracing method that is verified by the geometrical optics. In the present work, we adopt the cylinder equation for the mathematical expression of the lenticular lens. For the calculation of the direction cosine of the transmitted ray, we first calculate the refracting point at bottom of the lens and the direction cosine of the incident ray that propagating through the lens by the Snell's law, and then apply to finite ray-tracing method. Finally, we obtain the simulation results for the intensity distribution of the ray at optimal viewing distance. From these results, we confirm the realization of 3D image that exists separately according to the viewing position at an optimal viewing distance.

Optical Approach for Increasing the Resolution of Displayed Multi-view Image from Projection Type of Auto-stereoscopic 3D Display System by Adopting a Commercial Spherical Lenticular Lens Sheet (프로젝션 기반 무안경 방식 멀티뷰 3D 디스플레이에서 구면 렌티큐라 렌즈 시트를 이용하여 재생된 입체영상의 해상도를 증가시키는 광학적 접근 방법)

  • Sohn, Young-Sub;Kim, Sung-Kyu;Sohn, Kwanghoon;Lee, Kwang-Hoon
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.4
    • /
    • pp.147-153
    • /
    • 2012
  • Multi-view 3D displays based on a limited number of pixels have the problem that the stereo-scopic image has a low resolution because of increasing view number. To solve the problem of low resolution, we propose an optical approaching method that focuses the width of a unit pixel by using a commercial spherical shape lenticular lens sheet and increases the effective resolution by increasing the number of sources of light in the multi-view 3D display system based on projection type. The method was performed in such an order that several main derivable parameters were defined, and, through the theoretical and experimental result, the value of the contractible unit pixel width and the scalable effective resolution was derived in a given system environment. As a result, for the case that the ray of light from the projector transmitted the 25 LPI lenticular lens sheet which has the pitch size 1.016 mm, the focused unit pixel width was 0.19 mm and the scalable effective resolution was, at most, 5 times wider than the original one. In addition, the range of depth of focus was 1.496 mm, which shows us the range of thickness tolerances of commercial spherical shape lenticular lens sheet and sufficient optical alignment tolerances.

3D Gaze-based Stereo Image Interaction Technique (3차원 시선기반 입체영상 인터랙션 기법)

  • Ki, Jeong-Seok;Jeon, Kyeong-Won;Jo, Sang-Woo;Kwon, Yong-Moo;Kim, Sung-Kyu
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.512-517
    • /
    • 2007
  • There are several researches on 2D gaze tracking techniques for the 2D screen for the Human-Computer Interaction. However, the researches for the gaze-based interaction to the stereo images or contents are not reported. The 3D display techniques are emerging now for the reality service. Moreover, the 3D interaction techniques are much more needed in the 3D contents service environments. This paper addresses gaze-based 3D interaction techniques on stereo display, such as parallax barrier or lenticular stereo display. This paper presents our researches on 3D gaze estimation and gaze-based interaction to stereo display.

  • PDF

470 x 235ppi poly-Si TFT LCD for High-Resolution 2D and 3D Autostereoscopic Display

  • Uehara, Shin-Ichi;Ikeda, Naoyasu;Takanashi, Nobuaki;Iriguchi, Masao;Sugimoto, Mitsuhiro;Matsuzaki, Tadahiro;Asada, Hideki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.783-786
    • /
    • 2004
  • We have developed a 470 x 235ppi poly-Si TFT LCD with a novel pixel arrangement, called HDDP (Horizontally Double-Density Pixels), for high-resolution 2D and 3D autostereoscopic display. 3D image quality is especially high in a lenticular-lens-equipped 3D mode because both horizontal resolution and vertical resolution are high, and because these resolutions are equal. 3D and 2D images can be displayed simultaneously in the same picture. In addition, 3D images can be displayed anywhere and 2D characters can be made to appear at different depths with perfect legibility. No switching of 2D/3D modes is necessary, and the design's thin and uncomplicated structure makes it especially suitable for mobile terminals.

  • PDF

Autostereoscopic Time Multiplexed 2D/3D Display

  • Kim, Dae-Sik;Shestak, Sergey;Cha, Kyung-Hoon;Koo, Jae-Phil;Hwang, Seon-Deok
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1803-1806
    • /
    • 2007
  • We have developed a 2D/3D time sequential LCD autostereoscopic display, which is capable of simultaneous displaying 2D and 3D graphics at a frame rate up to 120 Hz. Left and right sets of viewing zones are formed by a combination of a fast LC shutter and a lenticular lens array.

  • PDF

A Time-multiplexed 3d Display Using Steered Exit Pupils

  • Brar, Rajwinder Singh;Surman, Phil;Sexton, Ian;Hopf, Klaus
    • Journal of Information Display
    • /
    • v.11 no.2
    • /
    • pp.76-83
    • /
    • 2010
  • This paper presents the multi-user autostereoscopic 3D display system constructed and operated by the authors using the time-multiplexing approach. This prototype has three main advantages over the previous versions developed by the authors: its hardware was simplified as only one optical array is used to create viewing regions in space, a lenticular multiplexing screen is not necessary as images can be produced sequentially on a fast 120Hz LCD with full resolution, and the holographic projector was replaced with a high-frame-rate digital micromirror device (DMD) projector. The whole system in this prototype consists of four major parts: a 120Hz high-frame-rate DMD projector, a 49-element optical array, a 120Hz screen assembly, and a multi-user head tracker. The display images for the left/right eyes are produced alternatively on a 120Hz direct-view LCD and are synchronized with the output of the projector, which acts as a backlight of the LCD. The novel steering optics controlled by the multiuser head tracker system directs the projector output to regions referred to as exit pupils, which are located in the viewers’eyes. The display can be developed in the "hang-on-the-wall"form.

Method for Supplementing Single-View Resolution of Multiview Autostereoscopic Three-Dimensional Display Using Plate Beam Splitter

  • Kim, Hyun-Woo;Cho, Myungjin;Lee, Min-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.2
    • /
    • pp.108-113
    • /
    • 2021
  • Multiview autostereoscopic three-dimensional (MA3D) displays have the disadvantage that the single-view resolution decreases as the number of views increases. Furthermore, the resolution of MA3D displays is relatively degraded, even though the resolution of two-dimensional displays has increased recently. Therefore, it is unattractive to consumers, and the single-view resolution enhancement of MA3D displays is required. In this study, we developed a method for supplementing the single-view resolution of MA3D displays using a plate beam splitter that can show two MA3D displays simultaneously. By applying our proposed method, the resolution of a single view can increase, and the visual obstruction by the optical plate, which is a problem for MA3D displays, can be solved. In addition, an MA3D display was optically designed and fabricated using a parallax barrier. Finally, the experimental optical results obtained using the proposed method and the only MA3D display were compared.

Design and Tolerance Analysis of 3-D Stereoscopic Display Modules with Alternating Illumination Angles (조명각 변조 방식의 3차원 입체영상 표시장치설계 및 공차분석)

  • Jeong, Woo-Chul;Ha, Sang-Woo;Park, Hun-Yang;O, Beom-Hwan;Park, Se-Geun;Lee, El-Hang;Lee, Seung-Gol;Park, Sun-Ryoung;Jo, Sung-Min
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.201-208
    • /
    • 2005
  • In order to realize a 3-D stereoscopic display module with alternating illumination angles, several conditions required for a lenticular lens sheet were established, and then both the lens specification and the module structure were designed. Also the performance of the stereoscopic module and its tolerance characteristics were evaluated by simulating the intensity distribution on the observation plane with a finite-ray tracing technique. From the evaluation, it was known that an intersection area between two adjacent lenses should not be filled and that the lateral mismatch between a planar liquid crystal shutter and a lens sheet should be minimized.

3D Gaze Estimation and Interaction Technique (3차원 시선 추출 및 상호작용 기법)

  • Ki, Jeong-Seok;Jeon, Kyeong-Won;Kim, Sung-Kyu;Sohn, Kwang-Hoon;Kwon, Yong-Moo
    • Journal of Broadcast Engineering
    • /
    • v.11 no.4 s.33
    • /
    • pp.431-440
    • /
    • 2006
  • There are several researches on 2D gaze tracking techniques for the 2D screen for the Human-Computer Interaction. However, the researches for the gaze-based interaction to the stereo images or contents are not reported. The 3D display techniques are emerging now for the reality service. Moreover, the 3D interaction techniques are much more needed in the 3D contents service environments. This paper addresses gaze-based 3D interaction techniques on stereo display, such as parallax barrier or lenticular stereo display. This paper presents our researches on 3D gaze estimation and gaze-based interaction to stereo display.

Next Generation Non-Glasses 3D Stereoscopic Monitors and Spatial Information (차세대 무안경 3D 입체 모니터와 공간정보)

  • Lee, Seun-Geun;Jeon, Young-Jae;Lee, Dong-Cheon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.81-85
    • /
    • 2010
  • Recently, 3D stereo movies, 3D TV broadcasting, and stereoscopic monitors become hot issue. Worldwide engagement in an intense competition for stereo viewing technology just begins. Photogrammetry is the originator of dealing obtaining stereo imagery, processing and display. Non-glasses stereo monitors will replace existing monitors in near future. This study introduces real 3D stereo viewing methods of geospatial data on the non-glasses stereoscopic monitors.

  • PDF