• Title/Summary/Keyword: lens surface

Search Result 608, Processing Time 0.034 seconds

Relationship between Surface Sag Error and Optical Power of Progressive Addition Lens

  • Liu, Zhiying;Li, Dan
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.538-543
    • /
    • 2017
  • Progressive addition lenses (PAL) have very wide application in the modern glasses market. The unique progressive surface can make a lens have progressive refractive power, which can meet the human eye's different needs for distance-vision and near-vision. According to the national glasses fabrication standard, the difference between actual optical power after fabrication and nominal design value should be less than 0.1D over the lens effective area. The optical power distribution of PAL is determined directly by the surface. Consequently, the surface processing accuracy requirement is proposed. Beginning from the surface expressions of progressive addition lenses, the relationship equations between the surface sag and optical power distribution are derived. They are demonstrated through tolerance analysis and test of an example progressive addition lens with addition of 2.09D (5.46D-7.55D). The example addition surface is fabricated under given accuracy by a single-point diamond ultra-precision machine. The optical power of the PAL example is tested with a focal-meter after fabrication. The optical power addition difference between test result and design nominal value is 0.09D, which is less than 0.1D. The derived relationship between the surface error and optical power is verified from the PAL example simulation and test result. It can provide theoretical tolerance analysis proof for the PAL surface fabricating process.

Fabrication of Elliptical Micro-lens Array with Large Surface Using ${\mu}SL$ (마이크로광조형을 이용한 대면적의 타원형 마이크로 렌즈 어레이 제작)

  • Park, In-Baek;Lee, Su-Do;Kwon, Tae-Wan;Choi, Jae-Won;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.123-130
    • /
    • 2008
  • A 3D structure production method for microstereolithography is a useful way that produces complex structures with flexible processes and low cost. Several UV curable resins were blended and the optimal resin for micro-lens fabricate was selected through viscosity, workability and transmission tests. It consists of 1, 6 - Hexanediol diacrylate with 15 Apha and Isobornyl acrylate for reducing some shrinkage. When fabricating a micro-lens array on large surface, some distortion of shape occurred because of the surface tension between cured part. To overcome this problem, the optimal processing conditions were derived from considering amount of the resin and surface tension. Large surface Micro-lens array, which are a type of elliptical convex and consist of 18,000 micro-lens in the range of 2cm*2cm were fabricated. The focal length to the X-axis and Y-axis were calculated. To verify the performance, measure an energy distribution of transmitted light from the Large surface Micro-lens array.

The Effect of Circle Lens and Soft Contact Lens with Identical Material in Clinical Application on the Eyes (써클 및 동일 재질 콘택트렌즈의 임상 적용시 눈에 미치는 영향)

  • Park, Sang Hee;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.2
    • /
    • pp.147-157
    • /
    • 2011
  • Purpose: The present study was conducted to investigate the actual condition of circle lens wear and the differences caused by the pigmentation in blinking rate, non-invasive tear break-up time (NIBUT), and lens surface between circle and soft contact lens wear during clinical application. Methods: Eighty subjects were surveyed to know the actual condition of wearing circle lens. Blink rate, NIBUT of 20 subjects in twenties were measured after separately wearing soft contact lens and circle lens for 5 days. Their lens surfaces were also observed by scanning electron microscope. Results: Fifty percent of circle lens wearers answered that major reason for changing circle lens was discomfort and 67% of answerers wore circle lens more than 6 hours a day. The tendency of increased blink rates in both wearers of circle and soft contact lens at 30 minutes later when tear film stabilized and 3 hour after lens wearing was shown on the 1st, 3rd and 5th day with expanding wearing time. Especially at 3 hours after lens wearing on the 3rd and 5th day, the difference of blink rates was statistically different in circle lens wear and soft contact lens wear. The NIBUTs of soft contact lens wearers and circle lens wearers were 6.0 and 3.7 secs, respectively, at 30 min later on 1st day and were significantly different. NIBUTs of soft contact lens wearers and circle lens wearers were also statistically different 3 hrs after lens wearing on the 1st day and the similar pattern of NIBUTs was shown on the 3rd and 5th day. The roughness of both surfaces in soft contact lens and front surface in circle lens was same. However, pigmented front surface of circle lens was rougher and uneven. Conclusions: As the results, the circle lens wearers might feel discomfort in clinical application since the difference in lens surface of circle lens would change lens wettability during wearing. The difference by tinting contact lens was shown from the result, which could help better wearing circle lens.

The Effect of Physical and Chemical Stimuli on Ophthalmic Lens Coatings (물리적, 화학적 자극이 안경 렌즈의 코팅에 미치는 영향)

  • Kim, So Ra;Kim, Ji Yoon;Kim, Ka Young;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.3
    • /
    • pp.237-245
    • /
    • 2011
  • Purpose: The present study was conducted to investigate whether certain repeated physical and/or chemical stimuli added on ophthalmic lenses might induce any changes of the functions of lens coatings. Methods: The changes in lens surface, light transmittance, foggy duration, durability of ophthalmic lenses were determined after the application of tearing-off with tape, rubbing with acetone, soaking in acetone or distilled water of ophthalmic lens (CR-39 material) as physical and/or chemical stimuli. Results: The change of ophthalmic lens surface was detected after soaking in acetone for longer than 30 minutes by observing the lens surface to figure out the functional change of hard coating. The ophthalmic lens soaked in distilled water for 180 minutes showed little functional change of anti-reflection coating as 1% by measuring light transmittance of lens. However, the function of anti-reflection coating was almost disappeared after the ophthalmic lens was soaked in acetone for 60 minutes. The foggy duration of ophthalmic lens soaked in acetone was increased by estimating foggy duration of lens. The lens coating was shown to be defected when the pre-damaged ophthalmic lenses were torn off with tape, rubbed with acetone and soaked in distilled water or acetone by observing pre-damaged lens surface to evaluate its durability. Conclusions: The careful management during ophthalmic lens dispensing or usual eyeglass wearing is needed since the change in ophthalmic lens coatings was shown by repeated physical and/or chemical stimuli.

Development of intelligent grinding system for aspherical surface machining (비구면 가공용 지능형 연삭 시스템 개발)

  • Baek, Seung-Yub;Lee, Hae-Dong;Kim, Sung-Chul;Lee, Eun-Sang
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1099-1104
    • /
    • 2004
  • As consumer in optics, electronics, aerospace and electronics industry grow, the demand for ultra precision aspherical surface lens increases higher. To enhance the precision and productivity of ultra precision aspherical surface micro lens, the following specification of ultra precision grinding system is required: the highest rotational speed of the grinder is 100,000rpm and its turning accuracy is $0.1{\mu}m$, positioning accuracy is $0.1{\mu}m$. The development process of the grinding system for the ultra precision aspherical surface micro lens for optoelectronics industry is introduced. In the work reported in this paper, an intelligent grinding system for ultra precision aspherical surface machining was designed by considering the factors affecting the surface roughness and profiles accuracy. An aerostatic form was adopted to build the spindle of the workpiece and the spindle of grinder and ultra precision LM guide way was adopted in this system.

  • PDF

Development of machining system for ultra-precision aspheric lens mold (초정밀 비구면 렌즈 금형가공시스템 개발)

  • Baek, Seung-Yub;Lee, Ha-Sung;Kang, Dong-Myeong
    • Design & Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • As consumer in optics, electronics, aerospace and electronics industry grow, the demand for ultra precision aspherical surface lens increases higher. Precision turning with single-diamond tools has a long history of development for fabrication of optical quality surfaces since the advent of aerostatic rotary spindles and precise linear motion guide ways. To enhance the precision and productivity of ultra precision aspherical surface micro lens, the following specification of ultra precision grinding system is required: the highest rotational speed of the grinder is 100,000rpm and its turning accuracy is $0.1{\mu}m$, positioning accuracy is $0.1{\mu}m$. The development process of the grinding system for the ultra precision aspherical surface micro lens for optoelectronics industry is introduced. In the work reported in this paper, an intelligent grinding system for ultra precision aspherical surface machining was designed by considering the factors affecting the surface roughness and profiles accuracy. An aerostatic form was adopted to build the spindle of the workpiece and the spindle of grinder and ultra precision LM guide way was adopted in this system. And this paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. It results was that a form accuracy of $0.6{\mu}m$ P-V and a surface roughness of $0.006{\mu}m$ Rmax.

  • PDF

Program Development for Extracting the Numerical Data of Aspherical Surface for the Core Manufacturing of Ophthalmic Lens (안경렌즈 코아 가공을 위한 비구면 형상 도출 프로그램 개발)

  • Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.4
    • /
    • pp.87-90
    • /
    • 2007
  • To manufacture the lens mold used in producing polycarbonate (PC) lenses, the core manufacturing is needed and this core manufacturing is generally performed by diamond turning machine (DTM) or computer numerical control (CNC) lathe. The numerical data about the lens core feature is necessarily needed for operating of these devices. Therefore, we developed the program which calculate the numerical data about the lens core feature. The program was composed to be able to input aspherical coefficients of lens feature, display the graph of lens feature, and save the numerical data file.

  • PDF

Analysis of Polishing Mechanism and Characteristics of Aspherical Lens with MR Polishing (MR Polishing을 이용한 비구면 렌즈의 연마 메커니즘 및 연마 특성 분석)

  • Lee, Jung-Won;Cho, Myeong-Woo;Ha, Seok-Jae;Hong, Kwang-Pyo;Cho, Yong-Kyu;Lee, In-Cheol;Kim, Byung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.36-42
    • /
    • 2015
  • The aspherical lens was designed to be able to array a focal point. For this reason, it has very curved surface. The aspherical lens is fabricated by injection molding or diamond turning machine. With the aspherical lens, tool marks and surface roughness affect the optical characteristics, such as transmissivity. However, it is difficult to polish free form surface shapes uniformly with conventional methods. Therefore, in this paper, the ultra-precision polishing method with MR fluid was used to polish an aspherical lens with 4-axis position control systems. A Tool path and polishing mechanism were developed to polish the aspherical lens shape. An MR polishing experiment was performed using a generated tool path with a PMMA aspherical lens after the turning process. As a result, surface roughness was improved from $R_a=40.99nm$, $R_{max}=357.1nm$ to $R_a=4.54nm$, $R_{max}=35.72nm$. Finally, the MR polishing system can be applied to the finishing process of fabrication of the aspherical lens.

Estimation Method of the Best-Approximated Form Factor Using the Profile Measurement of the Aspherical Ophthalmic Lens (단면 형상 측정을 이용한 비구면 안경 렌즈의 최적 근사화된 설계 계수의 추정 방법)

  • Lee Hocheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.55-62
    • /
    • 2005
  • This paper presents mainly a procedure to get the mathematical form of the manufactured aspherical lens. Generally Schulz formula describes the aspherical lens profile. Therefore, the base curvature, conic constant. and high-order polynomial coefficient should be set to get the approximated design equation. To find the best-approximated aspherical form, lens profile is measured by a commercial stylus profiler, which has a sub-micrometer measurement resolution. The optimization tool is based on the minimization of the root mean square of error sum to get the estimated aspherical surface equation from the scanned aspherical profile. Error minimization step uses the Nelder-Mead simplex (direct search) method. The result of the lens refractive power measurement shows the experimental consistency with the curvature distribution of the best-approximated aspherical surface equation

The Micro Lens Mold Processing in Mechanical Fabrication Method (기계적인 가공방법에 의한 마이크로 렌즈 금형가공)

  • 정재엽;이동주;제태진;최두선;이응숙;홍성민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1885-1888
    • /
    • 2003
  • As high technology industries such as IT and display have developed, demand for application parts of micro lens and lens array has been extremely increasing. According to these trends, many researchers are studying on the fabrication technology for parts of the micro lens by a variety of methods such as MEMS, Lithography, LIGA and so on. In this paper, we have performed researches related to ultra precision micro lens, lens array mold and fabrication of Lenticular lens mold for three-dimensional display by using mechanical micro end-milling and fly-cutting fabrication method. Tools used in this research were a diamond tool of R 150$\mu\textrm{m}$. Cutting conditions set up feed rate, spindle revolution. depth of cut and dwell time as variables. And we analyzed surface quality variation of the processed products according to the cutting conditions, and then carried out experiments to search the optimum conditions. Through this research, we have confirmed that we can fabricate the ultra precision micro lens mold with surface roughness Ra=20nm and the holographic lens mold by using micro end-milling and fly-cutting fabrication method. Furthermore, we demonstrated problems happened in the fabrication of the micro lens and established the foundation of experimental study for formulating its improvement plan.

  • PDF