• Title/Summary/Keyword: lens magnification

Search Result 71, Processing Time 0.02 seconds

A Study on the Adequate HD Camera Focal Length in the Broadcasting Studio using LED Video Wall (LED 비디오월을 사용하는 방송환경에서 HD 카메라의 적정 초점거리 연구)

  • Choi, Ki-chang;Kwon, Soon-chul;Lee, Seung-hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.713-721
    • /
    • 2022
  • In order to use the LED video wall in the broadcasting studio, there are a few things to be aware of. First, since the pixels are closely arranged, a moire phenomenon may occur due to a short arrangement period, and second, the distance between pixels (pixel pitch) may be recorded on the image sensor of the broadcasting camera. When moire occurs or pixel pitch is observed, viewers feel uncomfortable. Moire effect can be reduced by adjusting the shooting distance or angle of the camera, but in order to prevent the pixel pitch from being recorded on the image sensor, secure a sufficient distance between the LED video wall and camera. even when the distance secured, the zoom lens used in the broadcasting studio must be operated by appropriately changing the magnification. If the focal length is changed by changing the magnification to obtain a desired angle of view, the pixel pitch may be unintentionally recorded. In this study we propose the range that the pixel pitch is not observed while changing the magnification ratio of the zoom lens when the distance from the video wall is sufficiently secured. The content was played back on the LED video wall and the LED video wall was recorded on the server using an HD camera equipped with a B4 mount zoom lens

Double-Gauss Optical System Design with Fixed Magnification and Image Surface Independent of Object Distance (물체거리가 변하여도 배율과 상면이 고정되는 이중 가우스 광학계의 설계)

  • Ryu, Jae Myung;Ryu, Chang Ho;Kim, Kang Min;Kim, Byoung Young;Ju, Yun Jae;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.1
    • /
    • pp.19-27
    • /
    • 2018
  • A change in object distance would generally change the magnification of an optical system. In this paper, we have proposed and designed a double-Gauss optical system with a fixed magnification and image surface regardless of any change in object distance, according to moving the lens groups a little bit to the front and rear of the stop, independently parallel to the direction of the optical axis. By maintaining a constant size of image formation in spite of various object-distance changes in a projection system such as a head-up display (HUD) or head-mounted display (HMD), we can prevent the field of view from changing while focusing in an HUD or HMD. Also, to check precisely the state of the wiring that connects semiconductor chips and IC circuit boards, we can keep the magnification of the optical system constant, even when the object distance changes due to vertical movement along the optical axis of a testing device. Additionally, if we use this double-Gauss optical system as a vision system in the testing process of lots of electronic boards in a manufacturing system, since we can systematically eliminate additional image processing for visual enhancement of image quality, we can dramatically reduce the testing time for a fast test process. Also, the Gaussian bracket method was used to find the moving distance of each group, to achieve the desired specifications and fix magnification and image surface simultaneously. After the initial design, the optimization of the optical system was performed using the Synopsys optical design software.

A CHARACTERISTIC PLANETARY FEATURE IN CAUSTIC-CROSSING HIGH-MAGNIFICATION MICROLENSING EVENTS

  • Kim, Do-Eon;Han, Cheong-Ho
    • Journal of The Korean Astronomical Society
    • /
    • v.42 no.3
    • /
    • pp.33-37
    • /
    • 2009
  • We propose a diagnostic that can resolve the planet/binary degeneracy of central perturbations in caustic-crossing high-magnification microlensing events. The diagnostic is based on the difference in the morphology of perturbation inside the central caustics induced by a planet and a wide-separation binary companion. We find that the contours of excess exhibit a concentric circular pattern around the caustic center for the binary-lensing case, while the contours are elongated or off-centered for the planetary case. This difference results in the distinctive features of the individual lens populations in the residual of the trough region between the two peaks of the caustic crossings, where the shape of the residual is symmetric for binary lensing while it tends to be asymmetric for planetary lensing. We determine the ranges of the planetary parameters for which the proposed diagnostic can be used. The diagnostic is complementary to previously proposed diagnostics in the sense that it is applicable to caustic-crossing events with small finite-source effect.

Alternative Description for Gaussian Image Plane

  • Kim, Byongoh;Lee, Sukmock
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.144-148
    • /
    • 2015
  • An alternative description for the Gaussian image plane (GIP) of an optical system for a given object is presented, which applies to both aberration-free and non-aberration-free systems. We extend the definition of transverse magnification (TM) to the image plane (IP) displaced from the GIP and find that the TM depends linearly on the locations of both an aperture stop placed in front of the system and the IP. Hence, we redefine the GIP as the location at which the slope of the TM variance changes sign. The definition is deterministic and self-consistent and, therefore, no other parameters or measurements are needed. The derivation of this definition using a set of paraxial ray tracings and supporting experimental data for a thick bi-convex lens system is presented.

A Parallel Mode Confocal System using a Micro-Lens and Pinhole Array in a Dual Microscope Configuration (이중 현미경 구조를 이용한 마이크로 렌즈 및 핀홀 어레이 기반 병렬 공초점 시스템)

  • Bae, Sang Woo;Kim, Min Young;Ko, Kuk Won;Koh, Kyung Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.979-983
    • /
    • 2013
  • The three-dimensional measurement method of confocal systems is a spot scanning method which has a high resolution and good illumination efficiency. However, conventional confocal systems had a weak point in that it has to perform XY axis scanning to achieve FOV (Field of View) vision through spot scanning. There are some methods to improve this problem involving the use of a galvano mirror [1], pin-hole array, etc. Therefore, in this paper we propose a method to improve a parallel mode confocal system using a micro-lens and pin-hole array in a dual microscope configuration. We made an area scan possible by using a combination MLA (Micro Lens Array) and pin-hole array, and used an objective lens to improve the light transmittance and signal-to-noise ratio. Additionally, we made it possible to change the objective lens so that it is possible to select a lens considering the reflection characteristic of the measuring object and proper magnification. We did an experiment using 5X, 2.3X objective lens, and did a calibration of height using a VLSI calibration target.

Design of 1× Optical Path Relay Adapter for Beam Splitting Prism used in Day & Night Scope (주야 관측경용 빔 분리프리즘을 위한 1× Optical Path Relay Adapter 설계)

  • Lee, Dong-Hee;Choi, Gyu-Jung;Jung, In;Park, Seung-Hwan
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.4
    • /
    • pp.441-447
    • /
    • 2012
  • Purpose: This paper is about development and design of the 1x optical path relay adapter for the beam splitting prism by us the day & night scope. Methods: To product the day & night scope by using the beam splitting prism and the commercial zoom optical system with the C-mount lens barrel structure, the optical path relay adapter, which doesn't change the image size of the zoom optical system and can stretch the position of the image-forming surface, is needed. We could design the 1x optical path relay adapter by using the CodeV program in which the Lens Module mode is offered. Results: We could design the optical path relay adapter used in the day&night scope with the beam splitting prism, of which characteristics have the EFL of -56.0 mm, the magnification of +1.0x, the distance from the 1st lens surface to the last lens surface of about 20.4 mm. The resolution of this system is characterized by 30 lp/mm at 40% MTF. This is enough to accommodate the designed optical path relay adapter can overcome the resolution of the 3rd generation of image intesifier tubes. Conclusions: By designing and applying the optical path relay adapter of which optical characteristics have the EFL of -56.0 mm, the magnification of +1.0x, the distance from the 1st lens surface to the last lens surface of about 20.4 mm, and the resolution of 30 lp/mm at 40% MTF, we could develop the new type day&night scope consisting of the beam splitting, the commercial zoom optical system with the C-mount lens barrel structure, and the 3rd generation of image intesifier tubes.

Development on a Roofed Pechan Prism Type Scope with Long Eye Relief (긴 안점거리를 갖는 지붕형 페찬 프리즘 타입 스코프 개발)

  • Park, Seung-Hwan;Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.3
    • /
    • pp.247-255
    • /
    • 2010
  • Purpose: Developing a roofed Pechan prism type scope with long eye relief. Methods: To reduce the overall length and to lengthen the eye relief of scope, the objective part was designed by adopting the roofed Pechan prism and also the eyepiece part was designed by adopting the field lens with minus refractive power in front of reticle, respectively. Finally, by integrating above two parts, the roofed Pechan prism type scope with 90 mm eye relief was developed. Results: The characteristics of the developed and fabricated scope with 90 mm eye relief by integrating the objective part with the roofed Pechan prism and the eyepiece part with minus refractive power had the magnification of $+3.0{\times}$, the length from the 1st lens to the last lens of about 121 mm, the barrel diameter of 28 mm, and the effective objective-diameter of 17 mm. Also it was found that the line width of resolution was about 900 cycles/rad at the 50% MTF value criterion. Conclusions: We could design and manufacture the roofed Pechan prism type scope with 90 mm eye relief, the characteristics of which had the magnification of $3.0{\times}$, the MTF above 50% at 900 cycles/rad, and the length from the 1st lens to the last lens of about 121 mm.

[발표취소] Gravitational Lensing by an Isothermal Sphere with a Supermassive Black Hole

  • Kim, Donghyeon;Park, Myeong-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.51.2-51.2
    • /
    • 2015
  • Gravitational lensed quasar systems are usually explained by a source quasar lensed by a galaxy that can be approximated by an isothermal sphere. But most galaxies have a supermassive black hole (SMBH) at its center. We study the lensing by an isothermal sphere with a central SMBH. The additional lensing effects of a SMBH on the number, position, and magnification of lensed images are investigated. We apply the analysis to observed lens systems including Q0957+561. We also study the lensing by an elliptical mass distribution with a SMBH.

  • PDF

Feature Extraction for Vision Based Micromanipulation

  • Jang, Min-Soo;Lee, Seok-Joo;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.41.5-41
    • /
    • 2002
  • This paper presents a feature extraction algorithm for vision-based micromanipulation. In order to guarantee of the accurate micromanipulation, most of micromanipulation systems use vision sensor. Vision data from an optical microscope or high magnification lens have vast information, however, characteristics of micro image such as emphasized contour, texture, and noise are make it difficult to apply macro image processing algorithms to micro image. Grasping points extraction is very important task in micromanipulation because inaccurate grasping points can cause breakdown of micro gripper or miss of micro objects. To solve those problems and extract grasping points for micromanipulation...

  • PDF

Gravitational Lensing by an Ellipsoid with a Supermassive Black Hole

  • Kim, Donghyeon;Park, Myeong-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.64.3-64.3
    • /
    • 2016
  • Gravitational lensed quasar systems are usually modelled by a source quasar lensed by an isothermal sphere galaxy. But most galaxies are elliptical and have a supermassive black hole (SMBH) at its center. We study lensing by an ellipsoid with a central SMBH to investigate the additional lensing effects of a SMBH on the number, position, and magnification of lensed images. We apply the analysis to the observed lens system Q0957+561, and explore the possibility of testing the existence of SMBH at the center of the lensing galaxy.

  • PDF