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Alternative Description for Gaussian Image Plane
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An alternative description for the Gaussian image plane (GIP) of an optical system for a given object 
is presented, which applies to both aberration-free and non-aberration-free systems. We extend the definition 
of transverse magnification (TM) to the image plane (IP) displaced from the GIP and find that the TM 
depends linearly on the locations of both an aperture stop placed in front of the system and the IP. Hence, 
we redefine the GIP as the location at which the slope of the TM variance changes sign. The definition 
is deterministic and self-consistent and, therefore, no other parameters or measurements are needed. The 
derivation of this definition using a set of paraxial ray tracings and supporting experimental data for a 
thick bi-convex lens system is presented.
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I. INTRODUCTION

The Gaussian (or paraxial) image plane (GIP) is the location 
of the object-like sharp image for aberration-free systems 
and serves as a fundamental reference of the object for all 
other geometrical optics characteristics. When the object is 
distant, the GIP becomes the focal plane, which is one of 
the cardinal points. The focal length is defined as the 
distance from the nodal or principal point, another cardinal 
point, to the focal plane, while the reciprocal of the focal 
length gives the refracting power of the system. This allows 
the system to be designed to meet specific requirements 
[1]. Aberration is also defined as the difference between 
the wavefront at the exit pupil and the reference sphere 
with center located at the GIP [1].

To determine the location of the nodal point, the nodal 
slide technique serves as a standard method [2], and several 
methods exist for determining the focal length, the Talbot 
effect approach being one such example [3]. However, it 
appears that no report exists on the determination of the 
GIP location, which is the focus of this paper.

For aberration-free systems, rather than displaying a point 
at the GIP, a slight defocus from the GIP enlarges and blurs 
the image spot of an axial point object. For actual physical 
systems, however, the degraded image spot becomes overcast 
because of the effects of aberrations, mainly primary spherical 

aberrations, and the image spot itself cannot be distinguished 
from the defocus and spherical aberrations. In addition, 
diffraction and interference within the focal region are still 
unavoidable. According to 3rd-order aberration theory, the 
optimal image point can be acquired if the primary spherical 
aberration is known a priori, which is not the case in 
typical physical systems. However, we previously measured 
both spherical and defocus aberrations as a function of the 
Ronchi ruling locations in the Ronchi test, and the location 
of the GIP was determined under the assumptions of 
3rd-order aberration theory [4].

In this paper, we extend the usual definition of the transverse 
magnification (TM) in terms of paraxial ray tracing to the 
image plane (IP), which is assumed to be displaced from 
the GIP, and find that TM depends linearly on not only 
the displacement of the IP from the GIP, but also the 
location of the small circular aperture stop (AS) placed in 
front of the system under test. While the former dependence 
can be understood based on the pinhole effect [5], the 
latter dependence has not been reported previously. With 
both dependences, we are able to characterize the location 
of the GIP as the point at which the slope of the TM 
variation changes sign. This description is sufficiently deterministic 
and self-consistent that no other parameters or measurements 
are needed.

Note that the TM measurements require a set of off-axis 
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FIG. 1. Paraxial layout of the system. The y and u are the 
paraxial ray height and angle variables, respectively, and 
those with upper-bar correspond to the chief ray. The d and 
K symbols denote the distances and refracting powers of 
the planes, respectively, and n represents the refractive 
index of the lens. GIP: Gaussian image plane, zA: AS. Red 
arrow: chief ray, blue arrow: marginal ray.

point objects, and another aberration, distortion, is inevitable 
and prevents the TM measurements from being determined 
properly and accurately in normal circumstances. To overcome 
this issue, we use our recently developed analysis for distortion 
[6, 7], which can estimate an average error of 0.09% in 
the distortion for smartphone cameras over a full range of 
conjugation [8]. Therefore, a set of experimental data for a 
thick bi-convex lens system is presented to validate the 
description.

II. DETERMINATION OF GAUSSIAN IMAGE 
PLANE LOCATION

Paraxial ray tracing, called the y-nu method, is described 
in most geometrical optics textbooks [1], and is normally 
used to calculate the location of the GIP for a given object 
plane by tracing the so-called marginal ray. If a second 
ray is traced, called the chief or principle ray, a full analysis 
of Gaussian optics can be completed for the system under 
test. The transverse magnification (TM) is usually defined 
as the ratio of the chief ray heights at the object plane and 
at the GIP. In this paper, however, an IP which is 
displaced from the GIP is considered and the definition of 
the TM is extended to the displaced IP (hereafter we use 
this definition of TM for all cases). Figure 1 shows the 
paraxial layout for a thick lens imaging optical system 
with surfaces labeled planes number 1 and 2. The object 
plane is marked 0 and the IP is 3, while the displacement 
of the IP from the GIP is denoted by δ2.

A conventional marginal ray, whose ray height is 0 at 
the object plane and which is represented in Fig. 1 by a 
blue arrow, is traced to the GIP. The condition that the 
ray height must be zero is used to find the distance to the 
GIP from the 2nd plane, d2,GIP, according to
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where n indicates the refractive index of the lens; K1 and 
K2 represent the refracting powers of planes 1 and 2, 
respectively; and d0, d1, and d2 are the distances between 
the object plane and plane 1, plane 1 and plane 2, and 
plane 2 and the IP, respectively. The typical sign convention 
is used [1].

To trace the chief ray, represented by the red arrow in 
Fig. 1, the AS of the system must be specified. Instead of 
drawing the AS in Fig. 1, its location is denoted by the 
variable, zA (<0 for the configuration shown in Fig. 1), to 
the left of the first refracting surface of the system. Based 

on the sign convention, the chief ray angle variable, 0u , 
can be expressed as
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where 0y is the ray height at the object plane. The chief 
ray height, 3y , at the displaced IP (not the GIP) can be 
written as
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If d2 = d2,GIP for the GIP, Eq. (3) becomes the usual 
simple equation, where
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The TM, the ratio of the ray height at the displaced IP 
to that at the object plane, can be obtained by simply 
deleting the ray height at the object plane term from Eq. 
(3), such that
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Once again, the TM at the GIP can be obtained if d2 is 
substituted into Eq. (1), with

( ) ,
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where the denominator has been simplified by the inclusion 
of the total refracting power of the system, K, and the 
distance from the 1st-plane to the object-side principal plane, 
dH, which are expressed as
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FIG. 2. Experimental setup for GIP location measurement.
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Eq. (6) is equivalent to the thin lens equation, TMGIP = 
1/(1-pK), where K is the refracting power of a thin lens 
and p is the object distance to the thin lens, which is the 
sum of d0 and dH for the system represented in Fig. 1, by 
definition [1].

It is worth noting that, in practice, the experimental set 
to determine the Gaussian image plane of any multi-lens 
system for an object should treat the system as a whole as 
a single element, for example, as a thick lens, which is the 
approach adopted in this paper. The conversion from a multi-
lens system to a single element system can be equivalently 
achieved without any losses [1]. That is, the two refracting 
surfaces can be taken to represent the actual first and last 
refracting surfaces of the multi-lens system. In addition, 
the surface of the detector that is defined as an IP and a 
circular aperture located in front of the system (in the 
experiment that will be described in detail below and as 
shown in Fig. 1) are the two most important elements to 
be considered during the experiment.

Eq. (6) shows that the TM at the GIP does not depend 
on anything but the elements described above, as expected. 
In contrast, when the IP is not on the GIP, the TM is no 
longer a constant but a function of various parameters, as 
shown in Eq. (5). In order to determine the relationship 
between the TM and the AS and IP locations, Eq. (5) 
must be rearranged. From Eq. (6) and the expression 
d2,GIP=d2-δ2, Eq. (5) can be rewritten as
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where the minus sign of the second term is due to the fact 
that the IP is displaced to the left of the GIP, according to 
the sign convention [1]. Note that no approximations were 
used to achieve the simplification from Eq. (5) to Eq. (8).

Eq. (8) indicates that the TM depends on the location of 
the AS, as well as that of the IP. The fact that the TM is 
linearly proportional to the displacement, δ2, can be understood 
as being a pinhole effect [5]. In order to understand the 
linear relation between the TM and AS location, however, 
an approximation is needed. If the magnitude of the variable, 
zA, is assumed to be much smaller than the distance, d0, 
then the variable in the denominator in Eq. (8) can be ignored 
and the second equation in Eq. (8) can be simplified as a 
linear function of zA. Thus,

,AbzaTM += (9)

where the intercept and slope are given by
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Ideally, the TM does not depend on the location of the 

AS when the IP is exactly on the GIP. However, the IP in 
any physical system cannot be located exactly at the GIP 
and, therefore, the IP can be considered as being displaced 
from the GIP by some amount, without the loss of generality. 
In this paper, this fact is assumed at the outset.

If the location of the AS is varied over a short range 
and the corresponding TMs are measured, they will vary 
linearly with distance from surface 1 to the AS, and the 
slope of the TM variance will be given by the level of 
displacement of the IP, as shown in the second expression 
of Eq. (10). If a set of similar measurements is repeated 
for a set of different IP locations, the slopes will vary 
accordingly. Eventually, the sign of the slope will change 
as the IP crosses the GIP. Thus, the GIP location can be 
determined as that of the IP for which the sign of the 
slope changes from positive to negative or vice versa.

III. EXPERIMENTS AND DISCUSSION

To demonstrate the method described in Sec. 2, the 
experimental setup shown in Fig. 2 was utilized for a series 
of measurements to be conducted. We used our previous 
work on distortion analysis to obtain accurate and precise 
measurements of the transverse magnification [6, 7]. Briefly, 
a 15” LCD monitor (pixel pitch = 0.294 × 0.294 mm2) 
was used as an object plane to display a number of bright 
pixels in a square grid (55 × 55) as point sources, and a 
circular AS of diameter 3 mm was placed in front of a 
bi-convex testing lens (BICX-25.4-23.9-C, CVI Melles 
Griot, f = 24.8 mm at λ = 546 nm). The pixels of the 
point sources were turned to maximum intensity (= 255 
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                    (a)                  (b)

FIG. 3. (a) Measured TMs as a function of AS location, zA, for various IP locations. Each solid line was calculated using the 
best fit values after the corresponding TMs were fit to a linear function. (b) Fitted slopes as a function of IP location. The slopes 
were fit to a linear function to determine the corresponding GIP location and the solid line was calculated using the best fit slope 
and intercept.

intensity) and all other pixels were turned off (= 0 intensity). 
The resultant images were obtained on a monochromatic 
CMOS detector (Mightex Systems) with a detector pixel 
pitch of 5.2 × 5.2 μm2. Finally, the camera was positioned 
at the optimal focus location and the gain and exposure 
time were adjusted so that the peak intensity was under 
the saturation level.

Each measured image was composed of spots that 
resemble the pattern of the bright pixels on the monitor, 
and the spot coordinates in the image were analyzed and 
processed using a set of fitting procedures, as described in 
Ref. 6. The tip/tilt angles were minimized and the distortion 
center was aligned to the optical axis as far as possible. 
The transverse magnification measurements were then 
performed.

For an IP that was located initially at an arbitrary 
location near the GIP, the AS was placed at a set of 10 
different locations in front of the lens with an increment 
of 0.2 mm and the corresponding TMs were measured. 
The AS locations were measured with respect to the front 
lens vertex with a precision of 0.01 mm. Then, the IP was 
further displaced from the lens by 0.02 mm and the same 
set of measurements was repeated. Figure 3(a) shows the 
measured TMs as a function of the AS for various IP 
locations whose micrometer readings are given along with 
the corresponding data. This figure clearly shows that the 
TM trends conform to expectation based on Eq. (9) and 
(10): they are increasing for the IP located at 0.18, decreasing 
at 0.38, and almost constant at 0.28. To quantify these 
trends, each set of TMs was fit to a linear function and 

the solid lines were calculated based on the best fit values, 
as shown in Fig. 3(a).

In order to determine the linear variance of the slopes 
in response to varying IP location, the best fit slopes, 
d(TM)/d(zA), as functions of IP location were plotted, as 
shown in Fig. 3(b). While the slopes of the TMs for the 
IPs located between 0.18 mm and 0.26 mm are positive, 
those between 0.28 mm and 0.38 mm are negative, indicating 
that the GIP is located between 0.26 mm and 0.28 mm. 
To calculate the numerical value, another linear function 
was fit to the set of slopes and IP locations, and the slope 
and intercept were used to compute the GIP location, 
yielding a result of 0.27 mm. The solid line in Fig. 3(b), 
which was calculated using best fit values, clearly 
demonstrates the linear relationship between the TM and 
the AS, and also the IP location, as described in Sec. 2.

IV. SUMMARY

In this paper, the Gaussian image plane of an optical 
system for a given object has been redefined as the position 
at which the slope of the TM variance changes sign. 
Based on this definition, a method of locating and measuring 
the GIP has been derived and evaluated. In a practical 
experiment, a series of transverse magnification measure-
ments for a thick bi-convex lens system with known 
locations of the IP and a circular aperture was conducted. 
It was found that the TM varies linearly with the aperture 
location, as predicted, and that the slope of the variance 
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varies linearly with the IP location. The measurements 
clearly validate the theory and method described above 
and confirm that the redefinition of the GIP given in this 
paper is correct.
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