• Title/Summary/Keyword: leg press

Search Result 78, Processing Time 0.028 seconds

Correlation between Bilateral Reciprocal Leg Press Test and The Balance in Chronic Stroke Patient (뇌졸중 환자의 양하지 교차밀기 근력 검사와 균형의 상관 관계 연구)

  • Jung, Ji-Hoon;Kim, Joong-Hwi
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.4
    • /
    • pp.180-186
    • /
    • 2013
  • Purpose: This study was to find a correlation between the bilateral reciprocal leg press test and a the balance in chronic stroke patients. Methods: Eighteen patients performed an isokinetic leg press test consisting of a bilateral reciprocal and unilateral mode. Following the isokinetic leg press testing, subjects performed the balance test: Berg Balance Scale (BBS), Timed Up & Go (TUG) test, and stability limit. Pearson product moment correlation coefficients were used to determine the correlation between the mean score of the isokinetic leg press test, balance test in both affected and non-affected side. Results: This study indicated a significant correlation between the bilateral reciprocal leg press test and stability limit. There were significant correlation between non-affected side bilateral leg press(NBL) and BBS (r=0.501), affected side bilateral leg press (ABL) and non-affected side stability limit(NS) (r=0.614), ABL and total stability limit (TS) (r=0.493), NBL and affected side stability limit(AS) (r=0.480), NBL and NS (r=0.560), NBL and TS (r=0.563), among the patients. Conclusion: Measurement of the lower extremity strength using the bilateral reciprocal leg press test can be used as an evaluating tool of the balance test.

Analysis of Resistive Exercise Characteristics for Newly Developed Sonic Vibration Leg Press (새로이 개발된 음파 진동 레그프레스의 저항 운동 특성 분석)

  • Cho, Young-Kuen;Hwang, Sun-Hong;Kim, Hyun-Dong;Kim, Young-Ho;Min, Jin-Young;Kim, Han-Sung;Lim, Do-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1704-1708
    • /
    • 2008
  • Many studies have emphasized the importance of resistive exercise to maintain a healthy human body, particular in prevention of weakening of physical strength. Recently, some studies advocated that an application of vibration as a supplementary means in a regular training was effective in encouraging physical strength. Aim of the current study was, therefore, to identify if an application of vibration in a resistive exercise was effective in encouraging physical strength as that in a regular training. A 3-dimensional virtual lower extremity model for a healthy male and virtual leg-press model were generated and synchronized. Dynamic leg-press exercises on a slide machine with/without extra load and on a footboard with vibration as well as on a slide machine with extra load were analyzed. The results of the current indicated that the application of the vibration on the dynamic leg-press exercise might be not greatly effective in encouraging physical strength, compared with the dynamic leg press exercise with extra load. It was, however, thought that the application of the vibration might be helpful to elderly individuals because the reduced maximum muscle strength appeared by the effect of the vibration may avoid a muscular spasm, which can be driven from a high muscle strength sometimes produced during the leg-press exercise with extra load.

  • PDF

Effects of Strengthening Exercise using Vibrating Leg-press (진동 레그 프레스를 이용한 근력운동의 효과)

  • Hwang, S.H.;Cho, Y.G.;Sohn, R.H.;Kim, Y.H.;Kim, H.S.;Lim, D.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.3
    • /
    • pp.221-225
    • /
    • 2009
  • The purpose of this study was to investigate the biomechanical effects of an application of whole body vibration during strengthening exercise. Every participant performed four weeks exercise program using general leg-press versus vibrating leg-press. Participants did legpress exercise three sets of 25 repetitions with the load of 25 percent of 1RM during first week, three sets of 20 repetitions with 40 percent of 1RM during second week, three sets of 15 repetitions with 60 percents of 1RM during third week, and three sets of 15 repetitions with 80 percent of 1RM during last fourth week. The vibration(25Hz, 5mm) was applied only to the vibration exercise group. A three dimensional virtual lower extremity model for one of subject and virtual leg-press model were generated. The knee extensor muscle forces were analyzed using the virtual model and the knee joint torque(maximum extension torque) was measured using an isokinetic device. Calculated muscle forces were smaller in vibrating leg-press exercise than in general leg-press exercise. An increase of the maximum knee extension joint torque was 2.14 times larger approximately after the four week vibration leg-press exercise program was performed.

Development of sonic wave leg press system (음파를 이용한 진동 레그프래스 운동기구개발)

  • Min, Jin-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1501-1504
    • /
    • 2008
  • By applying sonic wave vibration technology in weight exercise equipment, we introduced an completely new concept of device into the fitness and medical industry creating a new trend. Sonic wave leg press exercise system which got over the limit of technology will be easily accessible not only by professional athletes but also by ordinary users and even minority groups such as disabled, elderly, children.

  • PDF

Difference in sEMG on lower extremity during leg press exercise with whole body vibration with various amplitude and frequency (수직 진동을 동반한 Leg Press 운동 시 진동 크기와 주파수에 따른 하지 근육의 근전도 차이 분석)

  • Choi, Jin-Seung;Kim, Yong-Jun;Kang, Dong-Won;Mun, Kyung-Ryoul;Tack, Gye-Rae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1492-1495
    • /
    • 2008
  • As a prerequisite of developing muscle biofeedback system which can simulate analogous isokinetic exercise, the purpose of this study was to study the effects of frequency and amplitude of whole-body vibration on the difference in sEMG on lower extremities during leg press exercise with/without vibration. The amplitude of vibration was set to 20, 50, 80 and the frequency of vibration was set to 10, 20, 30, and 50 Hz. EMG were measured at Vastus lateralis muscle and Vastus medialis muscle. MP100 EMG module(BIOPAC system Inc., USA) was used for EMG measurement. The result showed that the combination of frequency of 30Hz and amplitude of 50 had more activated EMG than other combination with relatively small work load (30kg). It is necessary to experiment the frequency between 20 and 40Hz in detail, and to normalize sEMG using maximal voluntary contraction (MVC).

  • PDF

Pelvic Twist Analysis, PTA (골반 뒤틀림 변위 분석법에 대한 소고)

  • Jo, Jong-Jin;Kim, Sang-Deok
    • The Journal of Korea CHUNA Manual Medicine
    • /
    • v.5 no.1
    • /
    • pp.135-139
    • /
    • 2004
  • Objectives : The objectives of this report is to introduce PTA. Methods : The examination of the leg length inequality gives us a useful tool for diagnosis of body imbalance. especially pelvic distortion. There are four steps in the process of the leg analysis, according to "The Standard Manual of Chuna Society (2nd ed., Seoul:KCA Press. 2001)". In the last step of the analysis, knee-flexing over $90^{\circ}$, we have often experienced a specific sign that the lower legs are attracted toward one side spontaneously. The authors call it 'Lower Leg Lateral Attraction'. This is a very significant sign that gives us which is the major part between pelvis and the upper parts over sacrum. Thus it is definded as "Pelvic Twist Analysis, PTA" by the authors. With PTA, first, you must check the side of short leg and next, check the side of lateral attraction in lower leg over-flexing. If both sides coincide with each other, then the major part you can correct first is pelvic distortion. If not, you must find another part for primary correction, instead of pelvis. Conclusions : PTA becomes a useful complement to the examination of the leg length inequality.

  • PDF

Effect of Low-intensity Resistance Training with Blood Flow Restriction on Muscle Volume and Strength in Elderly Women (저강도의 저항성 운동 시 혈류제한 적용이 노인여성의 근 비대와 근력 향상에 미치는 영향)

  • Yeo, Hyo-Seong;Kim, Hyo-Jeong
    • 한국체육학회지인문사회과학편
    • /
    • v.54 no.1
    • /
    • pp.535-544
    • /
    • 2015
  • This study was performed to determine the effect of low-intensity resistance training with blood flow restriction (BFR) on muscle volume and strength in elderly women. Sixteen elderly women (70.9±4.6 years) were divided into low (30% 1RM) and high (75% 1RM) intense resistance training groups. Tourniquet cuff (Zimmer, Germany) for BFR was applied only to the right leg during the training period. All subjects performed unilateral leg press, leg extension and leg curl (3 sets×12 repetitions) for 10 weeks (2d/wk). Blood pressure was increased from 110 to 240 mmHg during the training period at the most proximal region of exercised leg. Muscle volume and cross-sectional area (CSA) were measured by MRI and body composition was monitored by dual-energy X-ray absorptiometry (DEXA) and isokinetic muscular strength were analyzed in both legs. The quadriceps CSA (15.2%, p<.001) and muscle volume (13.8%, p<.001) were increased in high-intense trained leg with BFR and the increased rate was highest among groups. The quadriceps CSA (9.8%, p<.001) and muscle volume (6.9%, p<.001) were increased in low-intensity training group with BFR and their increased rates were higher than control groups. The strength by exercise training was significantly improved in all groups and tended to be higher in BFR groups. These results demonstrate low-intensity resistance training with blood flow restriction could be an effective way to improve muscle volume and strength in elderly women.

Wave induced motion of a triangular tension leg platforms in deep waters

  • Abou-Rayan, A.M.;El-Gamal, Amr R.
    • Ocean Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.149-165
    • /
    • 2013
  • Tension leg platforms (TLP's) are highly nonlinear due to large structural displacements and fluid motion-structure interaction. Therefore, the nonlinear dynamic response of TLP's under hydrodynamic wave loading is necessary to determine their deformations and dynamic characteristics. In this paper, a numerical study using modified Morison Equation was carried out in the time domain to investigate the influence of nonlinearities due to hydrodynamic forces and the coupling effect between all degrees of freedom on the dynamic behavior of a TLP. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables and the nonlinear equations of motion were solved utilizing Newmark's beta integration scheme. The effect of wave characteristics was considered.