속도중합을 역산을 이용하면 탄성파 자료처리에서 있어서 다양한 처리가 가능하므로, 이 분야는 최근에 들어 매우 유용한 영역으로 주목을 받고 있다. 이러한 다양한 처리에 속도중합 역산을 응용하기 위해서는 사용하는 역산이 잡음에 강하면서도 고해상도의 속도중합 결과를 얻을 수 있어야 한다. 이러한 성질을 갖는 역산 방법들 중에서 가장 성공적인 방법 중의 하나라고 볼 수 있는 반복적 가중의 최소자승법(Iteratively Reweighted Least-Squares: IRLS)의 이론적 배경과 구현 방법을 소개하고, 기존 기술 특성과 한계성을 살펴보았다.
속도중합의 역산을 이용하면 탄성파 자료처리에 있어서 다양한 처리가 가능하므로 이 분야는 최근에 들어 매우 유용한 영역으로 주목을 받고 있다. 하지만 다양한 처리에 적용하기 위해서는 사용되는 역산 방법이 잡음에 강하면서도 고해상도의 속도중합 결과를 만들 수 있어야 한다. 이러한 특성을 갖는 대표적인 역산에는 ${L_1}-norm$을 최소화시키는 IRLS(Iteratively Reweighted Least-Squares)방법을 주로 사용하였다. 본 논문에서는 이러한 성질을 갖는 또 다른 역산 방법의 하나로서 CGG (Conjugate Guided Gradient) 방법을 소개한다. CGG 방법은 반복적 최소자승법의 하나인 Conjugate Gradient (CG)방법을 변형시킨 형태로 ${L_1}-norm$을 최소화 시키는 역산법으로 활용할 수 있다. 본 논문에서는 CGG방법을 소개하고 기존의 IRLS방법과의 차이점 및 결과들을 비교하였다. 모의자료와 현장자료에 대한 실험결과를 통해서 CGG 방법이 IRLS방법과 마찬가지로 다양한 잔여/모델 norm을 최소화시키는 역산방법으로 사용될 수 있음을 보여준다.
감쇠최소자승법은 각종 물리탐사 자료에 가장 널리 사용되는 역산법이다. 일반적으로 최소자승법에서 최소화되는 목적함수는 자료오차(data misfit)와 모델제한자의 합으로 주어진다. 따라서 역산에서 자료오차와 모델제한자는 함께 중요한 역할을 담당한다. 하지만 역산에 관한 대부분의 연구는 주로 모델제한자의 설정방법과 적절한 라그랑지 곱수의 선정방법에 치중되어 왔다. 일반적으로 자료획득시 자료가 갖는 표준편차를 자료가중값의 계산에 사용하는 것이 추천되고 있지만, 실제 현장조사에서는 자료의 표준편차는 좀처럼 측정되지 않으며, 대부분의 역산에서 자료가중행렬은 어쩔 수 없이 단위행렬로 간주된다. 본 논문에서는 자료분해능행렬과 그 분산함수를 분석하여 자동적으로 계산된 자료가중행렬을 사용하는 역산법을 개발하였다. EACB법이라 명명한 이 역산법에서는 분해능이 높은 자료에는 높은 가중값을, 작은 자료에는 작은 가중값을 부여한다. 개발된 EACB 역산법을 전기비저항 토모그피법에 적용한 결과, 보다 안정적이고 분해능이 향상된 결과를 얻을 수 있었다.
CG (conjugate gradient) 법은 선형 연립방정식을 반복적으로 푸는 가장 효율적인 해법 중 하나이고, 또한 비선형 최소자승문제에도 적용할 수 있다. 자기지전류(MT) 역산 문제를 풀 때에는 최소자승문제의 목적함수 자체의 최소화에 직접 CG 법을 적용하거나, Gauss-Newton 법에 기초한 반복역산의 각 반복단계에서 모형의 변화량 계산에 CG 법을 이용할 수 있다. CG 법을 적용할 경우, 임의의 벡터에 대한 감도행렬의 영향 및 그 전치행렬의 전치행렬의 영향을 감도행렬을 직접 구하지 않고 계산할 수 있다는 장점이 있기 때문에 감도행렬의 계산 규모가 방대한 3차원 역산 문제에서 계산시간을 월등히 줄일 수 있다.
수평다층(水平多層) 지질구조(地質構造)모델에 있어서 외견전기비저항곡선(外見電氣比抵抗曲線)의 자동해석(自動解析)에 최소자승법(最小自乘法)을 적용(適用)하여 보았다. 이 방법(方法)은 digital filtering 법(法)과 종합(綜合)된 damped least-squares algorithm으로 구성된 것으로서, 일반적(一般的)으로 사용(使用)되고 있는 curve-matching 법(法)보다 시간(時間)이 빠르고 정도(精度)도 높다는 것을 알게되었다. 이 반전법(反轉法)을 시험(試驗)하기 위해서 한개의 이론(理論)데이터와 3개의 현장탐사(現場探査) 결과(結果)를 선택(選擇)하여 해석(解析)하였다. 3층(層) 지질구조(地質構造)모델로부터 나오는 이론(理論)데이터의 해석(解析)을 통(通)하여 이 방법(方法)의 특징(特徵)을 파악(把握)할 수 있고, 또 종래(從來)의 Curve-matching법(法)에는 없는 명확(明確)한 특징(特徵)이 나타났다. 더우기 반전법(反轉法)의 유효성(有效性)은 현장탐사(現場探査) 결과(結果)의 해석(解析)에 의해서도 알 수 있었다. 그 때의 최적(最適) 지질구조(地質構造)모델은 시굴(試掘)로 확인(確認)된 지하구조(地下構造)와 일치(一致)함을 알 수 있었다.
탄성파 역산에 있어서 가장 널리 사용되는 최소자승($l^2$ norm)해는 이상치(outlier)에 매우 민감하게 반응하는 경향이 있다. 이에 반해서 $l^1$ norm을 최소화하는 해는 이상치에 강인한 면을 보이나 일반적으로 좀 더 많은 계산이 필요하다. 반복적가중의 최소자승법(Iteratively reweighted least squares [IRLS] method)을 이용하면 이러한 $l^1$ norm 문제의 근사해(approximate solution)를 효율적으로 구할 수 있다. 본 논문에서는 작은 크기의 잔여분은 $l^2$ norm으로 처리하며, 큰 크기의 잔여분은 $l^1$ norm으로 처리하는 하이브리드 $l^1/l^2$ norm 최소화를 IRLS 방법에 쉽게 적용하는 구현 기법을 소개한다. 소개된 알고리즘은 특이치(singularity)처리를 위한 임계값의 결정에 민감하게 반응하는 기존의 $l^1$ norm IRLS 방법과는 달리 임계값 결정에 상관없이 늘 강인한 역산의 특성을 보여준다.
The most popular minimization method is based on the least-squares criterion, which uses the $L_2$ norm to quantify the misfit between observed and synthetic data. The solution of the least-squares problem is the maximum likelihood point of a probability density containing data with Gaussian uncertainties. The distribution of errors in the geophysical data is, however, seldom Gaussian. Using the $L_2$ norm, large and sparsely distributed errors adversely affect the solution, and the estimated model parameters may even be completely unphysical. On the other hand, the least-absolute-deviation optimization, which is based on the $L_1$ norm, has much more robust statistical properties in the presence of noise. The solution of the $L_1$ problem is the maximum likelihood point of a probability density containing data with longer-tailed errors than the Gaussian distribution. Thus, the $L_1$ norm gives more reliable estimates when a small number of large errors contaminate the data. The effect of outliers is further reduced by M-fitting method with Cauchy error criterion, which can be performed by iteratively reweighted least-squares method.
탄성파 역산에 있어서 최소자승(${\ell}^2-norm$)해는 큰 오차에 매우 민감하게 반응하는 경향이 있다. 이에 반해서 ${\ell}^p-norm$ ($1{\le}p<2$)을 최소화하는 해는 잡음에 강인한 해를 보이나 보통은 좀 더 많은 계산이 요구된다. 반복적가중의 최소자승법(Iteratively reweighted least squares [IRLS] method)은 이러한 ${\ell}^p-norm$ 문제의 근사해를 효율적으로 구할 수 있도록 해준다. 본 논문에서는 작은 크기의 잔여분은 ${\ell}^2-norm$으로 큰 크기의 잔여분은 ${\ell}^2-norm$으로 적용되는 하이브리드 ${\ell}^1/{\ell}^2$최소화를 IRLS 방법에 쉽게 적용하는 기법을 소개한다. 모의 자료와 실제 현장자료에의 적용결과 큰 잡음이 포함된 경우 최소자승해보다 하이브리드 방법의 경우에 개선된 결과를 보임을 확인할 수 있었다.
A robust objective function in the frequency domain is applied to the acoustic full waveform inversion. The proposed objective function is defined as $l_1$-norm of residual wavefields in the frequency domain. Generally, the full waveform inversion is extremely sensitive to a number of factors such as parameterization, initial model, noise and so on. The numerical tests were performed for checking the sensitivity to attenuation and several noises. For the comparison with other objective functions, the conventional least-squares method and the logarithmic method were tested under the same condition. The synthetic data examples show that the proposed algorithm is more robust than the well-known methods.
Journal of the Korean Data and Information Science Society
/
제18권1호
/
pp.51-61
/
2007
Ridge regression (RR), principal component regression (PCR) and partial least squares regression (PLS) are among popular regression methods for collinear data. While RR adds a small quantity called ridge constant to the diagonal of X'X to stabilize the matrix inversion and regression coefficients, PCR and PLS use latent variables derived from original variables to circumvent the collinearity problem. One problem of PCR and PLS is that they are very sensitive to overfitting. A new regression method is presented by combining RR and PCR and PLS, respectively, in a unified manner. It is intended to provide better predictive ability and improved stability for regression models. A real-world data from NIR spectroscopy is used to investigate the performance of the newly developed regression method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.