• 제목/요약/키워드: least squares support vector machine

검색결과 67건 처리시간 0.022초

LS-SVM for large data sets

  • Park, Hongrak;Hwang, Hyungtae;Kim, Byungju
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권2호
    • /
    • pp.549-557
    • /
    • 2016
  • In this paper we propose multiclassification method for large data sets by ensembling least squares support vector machines (LS-SVM) with principal components instead of raw input vector. We use the revised one-vs-all method for multiclassification, which is one of voting scheme based on combining several binary classifications. The revised one-vs-all method is performed by using the hat matrix of LS-SVM ensemble, which is obtained by ensembling LS-SVMs trained using each random sample from the whole large training data. The leave-one-out cross validation (CV) function is used for the optimal values of hyper-parameters which affect the performance of multiclass LS-SVM ensemble. We present the generalized cross validation function to reduce computational burden of leave-one-out CV functions. Experimental results from real data sets are then obtained to illustrate the performance of the proposed multiclass LS-SVM ensemble.

Confidence Interval Estimation Using SV in LS-SVM

  • Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권3호
    • /
    • pp.451-459
    • /
    • 2003
  • The present paper suggests a method to estimate confidence interval using SV(Support Vector) in LS-SVM(Least-Squares Support Vector Machine). To get the proposed method we used the fact that the values of the hessian matrix obtained by full data set and SV are not different significantly. Since the suggested method implement only SV, a part of full data, we can save computing time and memory space. Through simulation study we justified the proposed method.

  • PDF

유기물의 인화점 예측을 위한 부분최소자승법과 SVM의 비교 (Comparison of Partial Least Squares and Support Vector Machine for the Flash Point Prediction of Organic Compounds)

  • 이창준;고재욱;이기백
    • Korean Chemical Engineering Research
    • /
    • 제48권6호
    • /
    • pp.717-724
    • /
    • 2010
  • 액체의 화재 및 폭발위험을 나타내는 가장 중요한 물성의 하나인 인화점의 실험 데이터는 그 필요에도 불구하고 실제로 데이터를 확보하는 것이 가능하지 않은 경우가 많다. 이 연구에서는 DIPPR 801에서 얻은 893개 유기물의 인화점 실험데이터로부터 인화점을 예측하는 부분최소자승법(PLS) 및 support vector machine(SVM) 모델을 만들고 비교하였다. 분자를 구성하는 각 구성요소들이 분자의 물성에 일정한 기여를 한다는 가정을 이용하여 분자의 물성을 예측하는 방법인 그룹기여법을 이용하여 65개 작용기가 이 예측모델의 독립변수가 되었고 분자량의 로그값이 추가되었다. 두 모델에서 결정해야 할 매개변수는 교차검증에서 계산된 오차를 이용하여 결정되었는데, SVM모델은 그 매개변수가 많아 particle swarm optimization을 이용한 최적화를 이용하였다. 훈련데이터의 선택이 예측성능에 영향을 줄 수 있어 임의로 100개의 데이터 세트를 생성하여 테스트하였다. 전체 데이터에 대해 계산된 평균절대오차는 PLS가 13.86~14.55였고, SVM이 7.44~10.26여서 SVM이 PLS에 비해 매우 우수한 예측성능을 보였다.

Comparative Study of Estimation Methods of the Endpoint Temperature in Basic Oxygen Furnace Steelmaking Process with Selection of Input Parameters

  • Park, Tae Chang;Kim, Beom Seok;Kim, Tae Young;Jin, Il Bong;Yeo, Yeong Koo
    • 대한금속재료학회지
    • /
    • 제56권11호
    • /
    • pp.813-821
    • /
    • 2018
  • The basic oxygen furnace (BOF) steelmaking process in the steel industry is highly complicated, and subject to variations in raw material composition. During the BOF steelmaking process, it is essential to maintain the carbon content and the endpoint temperature at their set points in the liquid steel. This paper presents intelligent models used to estimate the endpoint temperature in the basic oxygen furnace (BOF) steelmaking process. An artificial neural network (ANN) model and a least-squares support vector machine (LSSVM) model are proposed and their estimation performance compared. The classical partial least-squares (PLS) method was also compared with the others. Results of the estimations using the ANN, LSSVM and PLS models were compared with the operation data, and the root-mean square error (RMSE) for each model was calculated to evaluate estimation performance. The RMSE of the LSSVM model 15.91, which turned out to be the best estimation. RMSE values for the ANN and PLS models were 17.24 and 21.31, respectively, indicating their relative estimation performance. The essential input parameters used in the models can be selected by sensitivity analysis. The RMSE for each model was calculated again after a sequential input selection process was used to remove insignificant input parameters. The RMSE of the LSSVM was then 13.21, which is better than the previous RMSE with all 16 parameters. The results show that LSSVM model using 13 input parameters can be utilized to calculate the required values for oxygen volume and coolant needed to optimally adjust the steel target temperature.

진동데이터 적용 모델기반 이상진단 (Model-based Fault Diagnosis Applied to Vibration Data)

  • 양지혁;권오규
    • 제어로봇시스템학회논문지
    • /
    • 제18권12호
    • /
    • pp.1090-1095
    • /
    • 2012
  • In this paper, we propose a model-based fault diagnosis method applied to vibration data. The fault detection is performed by comparing estimated parameters with normal parameters and deciding if the observed changes can be explained satisfactorily in terms of noise or undermodelling. The key feature of this method is that it accounts for the effects of noise and model mismatch. And we aslo design a classifier for the fault isolation by applying the multiclass SVM (Support Vector Machine) to the estimated parameters. The proposed fault detection and isolation methods are applied to an engine vibration data to show a good performance. The proposed fault detection method is compared with a signal-based fault detection method through a performance analysis.

고분자 전해질 연료전지용 막가습기의 상대습도 추정을 위한 소프트센서 개발 (Soft Sensor Development for Predicting the Relative Humidity of a Membrane Humidifier for PEM Fuel Cells)

  • 한인수;신현길
    • 한국수소및신에너지학회논문집
    • /
    • 제25권5호
    • /
    • pp.491-499
    • /
    • 2014
  • It is important to accurately measure and control the relative humidity of humidified gas entering a PEM (polymer electrolyte membrane) fuel cell stack because the level of humidification strongly affects the performance and durability of the stack. Humidity measurement devices can be used to directly measure the relative humidity, but they cost much to be equipped and occupy spaces in a fuel cell system. We present soft sensors for predicting the relative humidity without actual humidity measuring devices. By combining FIR (finite impulse response) model with PLS (partial least square) and SVM (support vector machine) regression models, DPLS (dynamic PLS) and DSVM (dynamic SVM) soft sensors were developed to correctly estimate the relative humidity of humidified gases exiting a planar-type membrane humidifier. The DSVM soft sensor showed a better prediction performance than the DPLS one because it is able to capture nonlinear correlations between the relative humidity and the input data of the soft sensors. Without actual humidity sensors, the soft sensors presented in this work can be used to monitor and control the humidity in operation of PEM fuel cell systems.

Support Vector Machine for Interval Regression

  • Hong Dug Hun;Hwang Changha
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2004년도 학술발표논문집
    • /
    • pp.67-72
    • /
    • 2004
  • Support vector machine (SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate interval linear and nonlinear regression models combining the possibility and necessity estimation formulation with the principle of SVM. For data sets with crisp inputs and interval outputs, the possibility and necessity models have been recently utilized, which are based on quadratic programming approach giving more diverse spread coefficients than a linear programming one. SVM also uses quadratic programming approach whose another advantage in interval regression analysis is to be able to integrate both the property of central tendency in least squares and the possibilistic property In fuzzy regression. However this is not a computationally expensive way. SVM allows us to perform interval nonlinear regression analysis by constructing an interval linear regression function in a high dimensional feature space. In particular, SVM is a very attractive approach to model nonlinear interval data. The proposed algorithm here is model-free method in the sense that we do not have to assume the underlying model function for interval nonlinear regression model with crisp inputs and interval output. Experimental results are then presented which indicate the performance of this algorithm.

  • PDF

비대칭 라플라스 분포를 이용한 분위수 회귀 (Quantile regression using asymmetric Laplace distribution)

  • 박혜정
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권6호
    • /
    • pp.1093-1101
    • /
    • 2009
  • 분위수 회귀모형은 확률변수들 사이에 확률적인 관계구조를 포함한 함수 모형을 좀 더 완벽하게 추정하도록 제공한다. 본 논문에서는 함수 추정에 로버스트하다고 알려져 있는 서포트벡터기계 기법과 이중벌칙커널기계를 이용하여 분위수 회귀모형을 추정하고자 한다. 이중벌칙커널기계는 고차원의 입력변수에 대한 분위수 회귀가 요구될 때 분위수 회귀모형을 잘 추정한다고 알려져 있다. 또한 본 논문에서는 광범위한 형태의 분위수 회귀모형 추정을 위해서 정규분포보다 비대칭 라플라스 분포를 이용한다. 본 논문에서 제안한 모형은 분위수 회귀모형 추정을 위해서 서포트벡터기계 기법에 이중벌칙커널기계를 이용하여 각각의 평균과 분산을 동시에 추정한다. 평균과 분산함수 추정을 위해 사용된 커널함수의 모수들은 최적의 값을 찾기 위해 일반화근사 교차타당성을 이용한다.

  • PDF

PLS와 SVM복합 알고리즘을 이용한 식각 종료점 검출 (Endpoint Detection Using Hybrid Algorithm of PLS and SVM)

  • 이윤근;한이슬;홍상진;한승수
    • 한국전기전자재료학회논문지
    • /
    • 제24권9호
    • /
    • pp.701-709
    • /
    • 2011
  • In semiconductor wafer fabrication, etching is one of the most critical processes, by which a material layer is selectively removed. Because of difficulty to correct a mistake caused by over etching, it is critical that etch should be performed correctly. This paper proposes a new approach for etch endpoint detection of small open area wafers. The traditional endpoint detection technique uses a few manually selected wavelengths, which are adequate for large open areas. As the integrated circuit devices continue to shrink in geometry and increase in device density, detecting the endpoint for small open areas presents a serious challenge to process engineers. In this work, a high-resolution optical emission spectroscopy (OES) sensor is used to provide the necessary sensitivity for detecting subtle endpoint signal. Partial Least Squares (PLS) method is used to analyze the OES data which reduces dimension of the data and increases gap between classes. Support Vector Machine (SVM) is employed to detect endpoint using the data after PLS. SVM classifies normal etching state and after endpoint state. Two data sets from OES are used in training PLS and SVM. The other data sets are used to test the performance of the model. The results show that the trained PLS and SVM hybrid algorithm model detects endpoint accurately.

Training for Huge Data set with On Line Pruning Regression by LS-SVM

  • Kim, Dae-Hak;Shim, Joo-Yong;Oh, Kwang-Sik
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 추계 학술발표회 논문집
    • /
    • pp.137-141
    • /
    • 2003
  • LS-SVM(least squares support vector machine) is a widely applicable and useful machine learning technique for classification and regression analysis. LS-SVM can be a good substitute for statistical method but computational difficulties are still remained to operate the inversion of matrix of huge data set. In modern information society, we can easily get huge data sets by on line or batch mode. For these kind of huge data sets, we suggest an on line pruning regression method by LS-SVM. With relatively small number of pruned support vectors, we can have almost same performance as regression with full data set.

  • PDF