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Abstract

In this paper we propose multiclassification method for large data sets by ensembling
least squares support vector machines (LS-SVM) with principal components instead of
raw input vector. We use the revised one-vs-all method for multiclassification, which
is one of voting scheme based on combining several binary classifications. The revised
one-vs-all method is performed by using the hat matrix of LS-SVM ensemble, which is
obtained by ensembling LS-SVMs trained using each random sample from the whole
large training data. The leave-one-out cross validation (CV) function is used for the
optimal values of hyper-parameters which affect the performance of multiclass LS-SVM
ensemble. We present the generalized cross validation function to reduce computational
burden of leave-one-out CV functions. Experimental results from real data sets are then
obtained to illustrate the performance of the proposed multiclass LS-SVM ensemble.

Keywords: Ensemble, generalized cross validation function, least squares support vector
machine, multiclassification, one-vs-all method, principal components, random sample.

1. Introduction

The support vector machine (SVM), firstly developed by Vapnik (1995, 1998) and his
group at AT&T Bell Laboratories, has been successfully applied to a number of real world
problems related to the classification and regression. Despite of lots of successful applications
of SVM in regression and classification problems, training SVM requires to solve a quadratic
programming problem, which is computationally formidable for the large data. Least squares
SVM (LS-SVM) is least squares version of SVM and was initially introduced by Suykens
and Vanderwalle (1999a). LS-SVM has been proved to be a very appealing and promising
method (Suykens et al., 2001; Seok, 2010; Shim and Seok, 2014; Hwang, 2015; Shim and
Hwang, 2015).

Multiclassification is typically performed by using the voting scheme based on combin-
ing several binary classifications (Hastie and Tibshirani, 1998; Ghosh, 2002), which includes
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one-versus-all method and one-versus-one (pairwise) method. For SVM Weston and Watkins
(1998) proposed the multiclassification without using the combination of binary classifica-
tions. For LS-SVM Suykens and Vanderwalle (1999b) proposed multiclassification in a step
with linear system composed of linear equations from each binary classifications.

To use LS-SVM for large data, Espinoza et al. (2005) proposed the fixed size LS-SVM with
sparse approximation of nonlinear feature mapping functions which are induced by kernel
functions computed based on Nystrom approximations (Williams and Seeger, 2001) and
quadratic Renyi entropy (Girolami, 2003). Hwang (2015) combined LS-SVMs on random
subsamples of large training data set for the multiclassification of test data set.

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal
transformation to convert a set of variables into a set of values of linearly uncorrelated
principal components. The number of principal components is less than or equal to the
number of variables of raw data. The first principal component has the largest variance and
each succeeding component in turn has the highest variance possible under the constraint of
orthogonality to the preceding components. It is known that PCA has lots of applications
including contraction of data, denoising and regression under multicollinearity. For brief
reviews of PCA see Jolliffe (2002).

In this paper we propose LS-SVM for large data sets, which is performed by ensenmbling
LS-SVMs which are trained using each disjoint random sample from the whole large training
data. In the training data set and the test data set, input vector consist of small number
of principal components obtained by applying eigen vectors of original raw input vector.
We present the leave-one-out cross validation (CV) function for the optimal values of hyper-
parameters which affect the performance of multiclassification and we obtain the generalized
cross validation (GCV) function for the approximate of CV function.

The remainder of paper is organized as follows. In Section 2 we propose a method of
ensembling LS-SVMs. In Section 3 we propose the multiclassification method by using prin-
cipal components and ensembling LS-SVMs. In Section 4 we illustrate the performance of
the proposed method through four real data sets. Section 5 contains the conclusions.

2. Ensembling LS-SVM for large data

2.1. LS-SVM for regression

For the training data set {z;,y; }_;, with each input vector z; € R?, the response y; € R,
and the test data by x;, we consider the nonlinear regression function given as the form of
f(x) = w'¢(x) + b, where b is a bias. Here ¢ : R — R% is the nonlinear feature mapping
function which maps the input space to the higher dimensional feature space, where the
dimension df defined in an implicit way.The optimization problem of LS-SVM is defined as
follows:

: 1 / C = 2
min §'w'w + 5;@- (2.1)

subject to e; = y; —w'ep(x;) = b, i=1,--- ,n,
where C' > 0 is a penalty parameter which controls the tradeoff between the goodness-of-fit
on the data and w'w.
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From (2.1) the Lagrangian function is constructed as follws:
L—Lw’w + gieQ—ia(e'— +w' ¢(x;) +b) (2.2)
- 9 9 £ i £ AT Yi 3 ) .

where «;’s are the Lagrangian multipliers.
From the conditions for optimality we have,
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which are equivalent to the linear equations as follows:

ZK(wi,wj)ai—i—ai/C—i—b:yi,i: 1,---,n, and Zai =0, (2.3)
j=1 i=1

where K (x;,x;) = ¢(x;) ¢(x;), which is obtained by the application of Mercer’s conditions
(1909).

From the linear equation (2.3) the bias estimate and optimal values of Lagrangian mul-
tipliers, b and @;’s can be obtained. The predicted regression function given z; € R is
obtained as

J(z) = K (xy, )& + b = Hyy, (2.4)

where H; = (K (x4, x),1)Hy, © = (x1,--- ,x,) € R y = (y1, -+ ,yn) € R",
(K+1/C)"'—(K+I/C)""1(1/(K+1/C)"*1)1(K+I/C)~!

K=K(=,2) and Ho= ( (V(K+1/C) 1) V(K +1/C)~!

It is known that it can be easily shown that Lagrangian multipliers of LS-SVM for binary
classification are identical to product of diagonal matrix of y and Lagrangian multipliers of
LS-SVM for regression obtained from equation (2.3), when y consists of class labels -1 and
1. That is, if y; =-1 or 1, then y(x4;)’s obtained by LS-SVM for regression and LS-SVM for
binary classification are identical. Thus, for the binary classification, each observation of the
test data x; can be classified into either class according to the sign of y(x;) in (2.4).

Instead of LS-SVM for binary classification, we use LS-SVM for regression to approximate
the leave-one-out cross validation function easily.

The performance of LS-SVM is affected by hyper-parameters, the penalty parameter C' > 0
and the kernel parameters. To select the optimal values of hyper-parameters of multiclass
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LS-SVM, we use the leave-one-out cross validation (LOO-CV) function as follows:

_ 1y ~(—i)

cv(e) = n;(y v (0))% (2.5)
where @ is a candidate set of hyper-parameters and ﬂfﬂ)(H) is the predicted value of y;
obtained from data without the ith observation. Since for each candidate set of hyper-
parameters, gf‘“(e) fori=1,---,n, should be evaluated, selecting parameters using LOO-
CV function is computationally formidable. By using leaving-out-one lemma (Wahba, 1990)
and the first order of Taylor expansion, the ordinary cross validation function is obtained as
follows:

2

" [1-7i(0 " (1-5.0)\
OCV(O)Z%Z 1@/8(@) :%Z (%) 7 (2.6)

i=1 | 1_ i=1

Oyi

where h;;(0) for ¢ = 1,--- ,n, is the ith diagonal element of the hat matrix H = H(x, x)
such that y = Hy. By averaging the residuals in (2.6) by(1 — trace(H)/n), the generalized
cross validation (GCV) function is obtained as follows:

ny i (1—3i(6))?
(n —trace(H))2 ~

GCV(9) = (2.7)

2.2. Ensembling LS-SVM with principal components

The training data set {x;, y; }1; is given, with each input vector ; € R4 which consists of
d. principal components, the output y; € R, and the test data by x;. Here ; and x; consist
of d. principal components computed from PCA of the original input vector of training data
set.

In LS-SVM, we need the inverse of (K(z,z)+ I/C)", which is almost impossible for
very large data set of size N. Here we propose a method of ensembling LS-SVM for large
data. Instead training one LS-SVM on the whole data at once, we train M LS-SVMs using
each random sample of size n from the whole training data and aggregate them to obtain
the predicted regression function for the test data x; € R% as follows:

y(xy) = Z (z;, ))& + b]) (2.8)

where M is a number of random samples, o/ and b7 are computed from the linear equation
(2.3) using the jth disjoint random sample (7, y’) from the whole training data such that
(x,y) = Uj]\il(a:j,yj) and (x7,y’)N(z*,y’) = {} for j # k . Ensembling LS-SVM is
inspired by the basic idea of the bagging (Breiman, 1996), known to improve the stability
and reduces the variance and help to avoid overfitting.

In ensembling LS-SVM, we obtain the inverse of (K (x/,z7) + 1/C) “forn << N, which
enables to train LS-SVM using large data.
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3. Multiclassification

3.1. Multiclass LS-SVM

In this section we give simple overview on multiclassification by LS-SVM using one-against-
all method. The training data set {x;,y;}" ; is given, with each input vector x; € R? and
the class label y; € {1,2,--- ,m}, where m is number of classes. For multiclassification using
one-against-all method, we first transform y into n x m matrix Y which consists of 1 and
-1, where Y;; = 1 and Y;; = —1 for k # [ implies ith observation belongs to the kth class.
Then we have m LS-SVMs for binary classification with {(z;, Yix)}y for k=1,---  m.

From the linear equation such that

[K+1/I/C é] [tz:} _ [Yok}’ k=1,2--.m, (3.1)

where Y j, is the kth column of Y, the estimate of bias and the optimal Lagrangian multi-
pliers, b, and & can be obtained. For the test data x; we have,

~

Yi(@;) = K(z¢, @) g + b, k=1,---,m. (3.2)

Then the test data x; is classified into the kth class for k = 1,2,--- ,m, if sign(l/};.C () =1
and sign(Y;(x;)) = —1 for k # 1.

3.2. Model selection of multiclass LS-SVM

The performance of multiclass LS-SVM is affected by hyper-parameters, the penalty pa-
rameter C and the kernel parameters. To select the optimal values of hyper-parameters of
multiclass LS-SVM, we use the leave-one-out cross validation (LOO-CV) function as follows:

3=

V(o) =~ (Yu, — ¥ 0(0)),
=1

where @ is a candidate set of hyper-parameters and 372-(,;;)(0) is the predicted value of Yjg,
obtained from data without the ith observation. Here k; is the column number of the ith
row of Y such that Y, = 1, which implies that the ith observation is classified into the k;th
class. Since for each candidate set of hyper-parameters, 25;’)(0) for i = 1,--- ,n, should
be calculated, selecting the optimal values of hyper-parameters using LOO-CV function is
computationally formidable. The ordinary cross validation (OCV) function is obtained as
follows:

~ ~ 2
I 1Y (0) | 1N [1- Y (6)
oCcvV(9) = E; —n, | T 5; <1 @) ) (3.3)

where h;;(0) for i = 1,--- ,n, is the ith diagonal element of the hat matrix H = H(x, x). By
averaging the residuals in (3.4) by (1 —trace(H)/n), the generalized cross validation (GCV)
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function is then obtained as follows:

n z (1= Vi, (6))?

GOV ) = i racetm®

(3.4)

3.3. Ensembling multiclass LS-SVM

For the multiclassification of test data x; we use a hat matrix to avoid solving m (number
of classes) linear equations in (3.1). Here (3.2) can be reexpressed as

) o &
Tien) = K(ee)a + b = (K (e, ()

B (K+I/C) ' —(K+I/C)" "1V (K+1/C) ') (K+1/C)~1
- 2. (V(K+1/C) ) (K +1/0) ! v
= (K(z, @), )Ho(2)Y , = H(zy, )Y p for k=1,--- ,m. (3.5)

Since H (x:, ) does not depend on Y, we can express ?(wt) for the test data x; as follows:

~

Y(z)) = H(z, 2)Y, (3.6)

where Y (z;) = (Yi(2¢), - , Yo (24)).
Thus, we do not need to solve linear equations m times using (3.1) but once given as (3.6).
For large data we divide the whole training data into M random samples such that the

whole training data (z,Y) = Ujle(:cj,Yj) and (27, Y/)N(z*,Y*) = {} for j # k. Then

Y (x;) for the test data @; can be written as follows:
. 1 X _ o
Y (x¢) = M;(K(mt,mﬂ), 1) Ho(2?) Y. (3.7)

The optimal values of hyper-parameters for training the individual LS-SVM using (a7, Y?)
for j=1,---, M, are selected by GCV function (3.4).

4. Numerical Studies

Through 4 real data sets available from UCI Machine Learning Depository (http://archive.
ics.uci.edu/ml) and MNIST handwritten digit database (http://yann.lecun.com/exdb/mnist)
- Wine data set, Glass data set, Sensor readings4 data set and Handwritten digit data set -
we illustrate the performance of multiclass LS-SVM ensemble (LS-SVME). As input vector
we use principal components instead of raw input vector in the original data set. The radial
basis function kernel is utilized for LS-SVM in numerical studies.

To illustrate the performance of multiclass LS-SVME, we run multiclass LS-SVM and the
classification and regression trees (CART, Breiman et al., 1984), the bootstrap aggregation
(Breiman, 1996) of 50 CARTS, and compare misclassification rates each other. We randomly
divide the whole data set into the training data set and the test data set. The averages of 50
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misclassification rates from multiclass LS-SVM, CART, and LS-SVME are obtained from
each test data set. The penalty parameter and bandwidth parameter, C' and o2 are obtained
from training data set by GCV function (3.4). We use 10-fold cross validation method for
the model selection of CART.

Wine data set of 3 classes obtained from results of wines grown in the same region in Italy
but derived from three different cultivars, consists of 12 input variables and 178 observations.
There are 144 observations in the training data set and 34 observations in the test data set.
We use 8 principal components and 2 random samples of the whole training data set for
multiclass LS-SVME. The averages and standard errors of 50 misclassification rates on 50
test data sets are shown in Table 4.1. From the results we can see that multiclass LS-SVME
have the best multiclassification performance on this data set.

Glass data set of 6 classes from the study of classification of types of glass motivated by
criminological investigation, consists of 9 input variables and 214 observations. There are
140 observations in the training data set and 74 observations in the test data set. We use
6 principal components and 2 random samples of the whole training data set for multiclass
LS-SVM ensemble. The averages and standard errors of 50 misclassification rates on 50 test
data sets are shown in Table 4.1. From the results we can see that multiclass LS-SVM have
the better multiclassification performance than that of CART on this data set.

Due to out of memory of MATLAB R2006b which is implemented for the numerical
studies we cannot train multiclass LS-SVM using the whole training data sets of following
two examples. Instead we use CART.

Sensor readings4 data set of 4 classes from results of robot navigates through the room
following the wall in the clockwise direction for 4 rounds using 24 ultrasound sensors arranged
circularly around its waist, consists of 4 input variables and 5456 observations. There are
5000 observations in the training data set and 456 observations in the test data set. We use
4 principal components and 5 random samples of the whole training data set for multiclass
LS-SVME. The averages and standard errors of 50 misclassification rates on 50 test data
sets are shown in Table 4.1. From the results we can see that multiclass LS-SVME have the
better multiclassification performance than that of CART on this data set.

Handwritten digit data set of 10 classes consists of digit 0,1,---,9 and 6000 observations
of 28 x 28 pixel image as shown in Figure 4.1. There are 5000 observations in the training
data set and 1000 observations in the test data set. We use 10 principal components and
10 random samples of the whole training data set for multiclass LS-SVME. The averages
and standard errors of 100 misclassification rates on 100 test data sets are shown in Table
4.1. From the results we can see that multiclass LS-SVME have the best multiclassification
performance on this data set.

Figure 4.1 Some image data in handwritten digit data set
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Table 4.1 The averages of misclassification error rates (standard error in parenthesis)

LS-SVM LS-SVM ensemble CART Bagging CART
Wine 0.0488 0.0482 0.0929 0.0576
N=144, (0.0055) (0.0048) (0.0049) (0.0062)
Nt=33 M=2
Glass 0.3033 0.3515 0.4678 0.3341
N=140 (0.0079) (0.085) (0.0099) (0.0066)
Nt=74 M=2
Sensor readings4 0.0399 0.0518 0.0267
N=5000 (0.0012) (0.0014) (0.001)
Nt=456 M=5
Handwritten digit 0.0642 0.3615 0.0884
N=5000 -0.0011 (0.0022) (0.0011)
Nt=1000 M=10

5. Conclusions

Through the examples we showed that ensembling multiclass LS-SVM with principal com-
ponents shows the good results, which is simple modeling of the multiclassification problem
for large data sets. Especially the proposed method showed good multiclassification perfor-
mance on the image data with many input variables. In future work, we study the optimal
numbers of random samples and principal components for multiclass LS-SVM ensemble.
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