Journal of the Korean Data and Information Science Society
/
v.28
no.6
/
pp.1457-1469
/
2017
Private education expenses is one of the key issues in Korea and there have been many discussions about it. Academically, most of previous researches for private education expenses have used multiple regression linear model based on ordinary least squares (OLS) method. However, if the data do not satisfy the basic assumptions of the OLS method such as the normality and homoscedasticity, there is a problem with the reliability of estimations of parameters. In this case, quantile regression model is preferred to OLS model since it does not depend on the assumptions of nonnormality and heteroscedasticity for the data. In the present study, the data from a survey on private education expenses, conducted by Statistics Korea in 2015 has been analyzed for investigation of the impacting factors for private education expenses. Since the data do not satisfy the OLS assumptions, quantile regression model has been employed in Bayesian approach by using gibbs sampling method. The analysis results show that the gender of the student, parent's age, and the time and cost of participating after school are not significant. Household income is positively significant in proportion to the same size for all levels (quantiles) of private education expenses. Spending on private education in Seoul is higher than other regions and the regional difference grows as private education expenditure increases. Total time for private education and student's achievement have positive effect on the lower quantiles than the higher quantiles. Education level of father is positively significant for midium-high quantiles only, but education level of mother is for all but low quantiles. Participating after school is positively significant for the lower quantiles but EBS textbook cost is positively significant for the higher quantiles.
Since the least squares estimation is not appropriate when multicollinearity exists among the regressors of the linear regression model, the principal components regression is used to deal with the multicollinearity problem. This article suggests a new procedure for the selection of suitable principal components. The procedure is based on the condition index instead of the eigenvalue. The principal components corresponding to the indices are removed from the model if any condition indices are larger than the upper limit of the cutoff value. On the other hand, the corresponding principal components are included if any condition indices are smaller than the lower limit. The forward inclusion method is employed to select proper principal components if any condition indices are between the upper limit and the lower limit. The limits are obtained from the linear model which is constructed on the basis of the conjoint analysis. The procedure is evaluated by Monte Carlo simulation in terms of the mean square error of estimator. The simulation results indicate that the proposed procedure is superior to the existing methods.
This study was performed to select the significant wavelengths for predicting the chlorophyll content of grafted cucumber seedlings using hyperspectral images. The visible and near-infrared (VNIR) images and the short-wave infrared images of cucumber cotyledon samples were measured by two hyperspectral cameras. A correlation coefficient spectrum (CCS), a stepwise multiple linear regression (SMLR), and partial least squares (PLS) regression were used to determine significant wavelengths. Some wavelengths at 501, 505, 510, 543, 548, 619, 718, 723, and 727 nm were selected by CCS, SMLR, and PLS as significant wavelengths for estimating chlorophyll content. The results from the calibration models built by SMLR and PLS showed fair relationship between measured and predicted chlorophyll concentration. It was concluded that the hyperspectral imaging technique in the VNIR region is suggested effective for estimating the chlorophyll content of grafted cucumber leaves, non-destructively.
Sensing soil organic matter is crucial for precision farming and environment friendly agriculture. Near infra-red(NIR) was utilized to measure the soil organic matter. Multivariate calibration methods, including stepwise multiple linear regression(MLR), principal components recession(PCR) and partial least squares regression(PLS), were applied to soil spectral reflectance data to predict the organic matter content. The effect of soil particle size and water content was studied. The range of soil organic matter contents was from 0.5 to 11%. Near infrared (NIR) region from 700 to 2,500nm was applied. For uniform soil particle size, result had good correlation (R$\^$2/ = 0.984, standard error of prediction= 0.596). The effect of soil particle size could be eliminated with 1st order derivative of the NIR signal. However. moist soil had a little lower correlation. R$\^$2/ was 0.95 and standard error of prediction was 0.94% using the PLS method. The results showed the possibility of soil organic matter measurement using NIR reflectance on the field.
Few ovservation can influence in model building procedure and can dominate the least squares fit of a selected model. An observation, however, may not have the same impact on all aspects of regression analysis. We introduce a statistic which measures the impact of individual cases on the overall goodness-of-fit statistics. We also propose an influence measure for variable selection problem. The property of uncorrelatedness between fitted values and residuals has been used to develop the influence measure. The performance of the measures are used to develop the influence measure. The performance of the measures are compared with other widely used influence measures by the analysis of real data.
Fine dust has recently become one of the greatest concerns of Korean people and has been a target of considerable efforts by governments and local governments. In the academic world, many researches have been carried out in relation to fine dust, but the research on the economic field has been relatively few. So we wanted to know how fine dust affects the economy. Big data of PM10 concentration for fine dust and fine dust theme stock price were collected for five years from 2013 to 2017. Regression analysis was performed using the linear regression model, the generalized least squares method. As a result, the change in the fine dust concentration was found to have a effect on the related theme stocks' price. When the fine dust concentration increased compared to the previous day, the fine dust theme stocks' price also showed a tendency to increase. Also, according to the analysis of stock price change from 2013 to 2017 based on fine dust theme stocks, companies with large regression coefficients were changed every year. Among them, the regression coefficients of Monalisa were repeatedly high in 2014, 2015, 2017, Samil Pharmaceutical in 2015, 2016 and 2017, and Welcron in 2016 and 2017, and the companies were judged to be sensitive to the concentration of fine dust. The companies that responded the most in the past 5 years were Wokong, Welcron, Dongsung Pharmaceutical, Samil Pharmaceutical, and Monalisa. If PM2.5 measurement data are accumulated enough, it would be meaningful to compare and analyze PM2.5 concentration with independent variables. In this study, only the fine dust concentration is used as an independent variable. However, it is expected that a more clear and well-explained result can be found by adding appropriate additional variables to increase the explanatory power.
Step-drawdown tests were conducted at four pumping Wells, two in porous media and two in fractured rocks, respectively. In general, P = 2.0 suggested by Jacob (1947) is applied to porous media and fractured rocks in terms of drawdowns of step-drawdown test. In an attempt to review problems of linear model (Jacob's graphic method) in interpreting the step-draw down test, the outcomes of well parameters (aquifer loss coefficient (B), well loss coefficient (C) and well loss exponent (P)) calculated from linear and nonlinear model (Labadie and Helweg's least-squares method) were compared and analyzed. The values of C and P calculated from linear and nonlinear models differed according to permeability of aquifer and the conditions of pumping well. The value C obtained from nonlinear models in porous media and fractured rocks is about $10^0{\sim}10^{-2}$ and $10^{-3}{\sim}10^{-6}$ times lower than in their linear models, respectively. The value P of porous media obtained from nonlinear model ranged from 2.123 to 2.775, while it ranged from 3.459 to 5.635 for fractured rocks. In case of nonlinear model, well loss highly depends on the value P. At this time, well efficiencies calculated from linear and nonlinear models were $1.56{\sim}14.89%$ for porous media and $8.73{\sim}24.71%$ for fractured rocks, showing a significant error according to chosen models. In nonlinear model, it was found that the regression analysis using the least squares method was very useful to interpret step-drawdown test in all aquifer.
Domestic film industry sales are increasing every year. Theaters are the primary sales channels for movies and the number of audiences using the theater affects additional selling rights. Therefore, the number of audiences using the theater is an important factor directly linked to movie industry sales. In this paper we consider a hybrid model that combines a multiple linear regression model and the Bass model to predict the audience numbers for a specific day. By combining the two models, the predictive value of the regression analysis was corrected to that of the Bass model. In the analysis, three films with different release dates were used. All subset regression method is used to generate all possible combinations and 5-fold cross validation to estimate the model 5 times. In this case, the predicted value is obtained from the model with the smallest root mean square error and then combined with the predicted value of the Bass model to obtain the final predicted value. With the existence of past data, it was confirmed that the weight of the Bass model increases and the compensation is added to the predicted value.
This study investigates the prediction of soil OM on Korean soils using the Visible-Near Infrared (Vis-NIR) spectroscopy. The ASD Field Spec Pro was used to acquire the reflectance of soil samples to visible to near-infrared radiation (350 to 2500 nm). A total of 503 soil samples from 61 Korean soil series were scanned using the instrument and OM was measured using the Walkley and Black method. For data analysis, the spectra were resampled from 500-2450 nm with 4 nm spacing and converted to the $1^{st}$ derivative of absorbance (log (1/R)). Partial least squares regression (PLSR) and regression rules model (Cubist) were applied to predict soil OM. Regression rules model estimates the target value by building conditional rules, and each rule contains a linear expression predicting OM from selected absorbance values. The regression rules model was shown to give a better prediction compared to PLSR. Although the prediction for Andisols had a larger error, soil order was not found to be useful in stratifying the prediction model. The stratification used by Cubist was mainly based on absorbance at wavelengths of 850 and 2320 nm, which corresponds to the organic absorption bands. These results showed that there could be more information on soil properties useful to classify or group OM data from Korean soils. In conclusion, this study shows it is possible to develop good prediction model of OM from Korean soils and provide data to reexamine the existing prediction models for more accurate prediction.
This paper presents a technique for estimating discharge rating curve parameters. In typical practical applications, the original non-linear rating curve is transformed into a simple linear regression model by log-transforming the measurement without examining the effect of log transformation. The model of pseudo-likelihood estimation is developed in this study to deal with heteroscedasticity of residuals in the original non-linear model. The parameters of rating curves and variance functions of errors are simultaneously estimated by the pseudo-likelihood estimation(P-LE) method. Simulated annealing, a global optimization technique, is adapted to minimize the log likelihood of the weighted residuals. The P-LE model was then applied to a hypothetical site where stage-discharge data were generated by incorporating various errors. Results of the P-LE model show reduced error values and narrower confidence intervals than those of the common log-transform linear least squares(LT-LR) model. Also, the limit of water levels for segmentation of discharge rating curve is estimated in the process of P-LE using the Heaviside function. Finally, model performance of the conventional log-transformed linear regression and the developed model, P-LE are computed and compared. After statistical simulation, the developed method is then applied to the real data sets from 5 gauge stations in the Geum River basin. It can be suggested that this developed strategy is applied to real sites to successfully determine weights taking into account error distributions from the observed discharge data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.