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Influential Observations on Variable Selection in Linear
Regression Modell)

Chi-Hoon Choi?, Ja-Heung Koo?, Jae June Lee?, Hongsuk Jorn?
Abstract

Few observation can influence in model building procedure and can dominate
the least squares fit of a selected model. An observation, however, may not have
the same impact on all aspects of regression analysis. We introduce a statistic
which measures the impact of individual cases on the overall goodness-of-fit
statistics. We also propose an influence measure for variable selection problem.
The property of uncorrelatedness between fitted values and residuals has been
used to develop the influence measure. The performance of the measures are
compared with other widely used influence measures by the analysis of real data.

1. Introduction

Regression analysis is widely used in data analysis and the development of empirical
models, Meanwhile, it is well known that a few observations can influence in model
building and can dominate the least squares fit of a selected model. Understanding the
impact of those observations on the analysis procedures are essential to enhance the
accuracy of the statistical analysis.

Various influence measures have been introduced in the context of selected regression
models, based on the idea of case deletion, in general, see Cook and Weisberg(1982),
Belsley et al.(1980), and Chatterjee and Hadi(1986). On the other hand, only few advice
has been introduced so far for assessing influence when fitted model is chosen by a
variable selection procedure. For example, Chatteriee and Hadi(1988) and Schall and Dunne
(1990) studied the impact of simultaneously omitting a case and a variable from a full
model, and Weisberg(1981) introduced a statistic to evaluate the contribution of each case
to Mallow’s C, (Mallows, 1973). Leger and Altman(1993) introduced a statistics, namely

unconditional Cook’s distance, to assess the infuence of each case on the variable selection
procedure.

In linear regression, the statistical quantities estimated from a least squares fit can be
substantially affected by a few or even by a single observation. An observation, however,
may not have the same impact on all aspects of regression analysis, as Chatterjee and
Hadi(1986) start asking "Influence on what ?”. In this paper, we introduce a statistic which
measures influence of each case on overall goodness-of-fit in a selected model. The
influence of each case is measured by the changes of the coefficient of determination

( R?) estimates when the case is deleted. In addition, we propose a statistic to assess the
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influence of individual observations on the process of variable selection. The proposed
statistic has been developed to measure the impact of each case on the "all possible”
regression procedure when the case is deleted.
We consider the linear regression model
y=XB + ¢ 1.1

where y is an n-vector of responses, X is an nXp full rank matrix of p independent
variables possibly including one constant predictor, and ¢ is an n-vector of unobservable
errors with E(¢) =0 and Var(e) =02 I. Throughout this paper, matrices and column
vectors are denoted by uppercase and lowercase letters, respectively. Thus the i-th case is
denoted by (y:, xi*). The subscript notation (i) is used to indicate the deletion of the

i-th observation, and the special character ~ above any quantity is used to mean an
estimator based on the method of least squares.

2. Influence Measure based on the Coefficient of Determination

Several methods have been introduced to identify observations with larger influence and
evaluate the effects on the various aspects of the regression analysis, for example on the
estimated parameters or predictions. All those measures have been constructed, based on
residuals, the projection matrix, the volume of confidence ellipsoids, influence functions,
and/or partial influence, see Chatterjee and Hadi(1986).

As is well-known, the coefficient of determination ( R?) is the maximum correlation
between y and x. In finite samples, an observation deviating from the linear structure
between y and x could change the estimated R? significantly. Lee(1990) pointed out this

problem and proposed an influence measure which is based on R? estimates. We newly
derive and introduce the statistic which measure the influence of each case on the

goodness-of-fit statistic R? when the case is deleted

2.1 An Influence Measure
Assuming that both y and X; are random, and z=(y: x1)f has a joint df F, a random
predictor linear model can be constructed as follows:

y = Bo+ xi B+ ¢ 2.1)
where Bg + x} B, is the regression equation and the error £, having E(£)=0 and
var(e)=02, is uncorrelated with the components of Xx1. If we put Bo = uy - n', B1, the

functional expression of the squared multiple correlation R? can be expressed as

_ o2(F)
RZ(F) - 1_ Uyy(F) (22)

where EF(2) = (ny(F)ns(F)), Varr(e) = o%(F), and Vars(y) = 6,(F).
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Motivated by the derivation in the Appendix, we define

_n? _ 22
dTy(zF) = L8 (F)O)Ly(F;;,(F)) e .

The estimators of statistical quantities obtained by least squares fit of (1.1) can be

N 3,
expressed as functionals evaluated at an empirical df, for example F = ﬁ; n" or
“

. 3, :
Fg = ; _l_n—zl where 5; is the df which puts mass 1 at the point z. An influence
Vil

measure, therefore, can be obtained by substituting a version of empirical df in (2.3). By
setting F=F and taking * = —rfjl'l— in (A.2), we define an influence measure,

2

(1- R)yi- 9 win) - 7o
DT(z) = (i) P * (24
»
where v(i) = —gg% , wn) = TI_IT, e; is the residual of i-th case, and hi is the
i

i-th diagonal element of the hat matrix.
Different influence measures, besides DT:(2), can be developed by putting different

versions of empirical df and * in (A.2) and (2.3). Introduction of those measures, properties
of them, and comparison with widely used influence measures such as Cook’s distance
(Cook, 1977) and DFFITS (Belsley et al, 1980) will be given in a separate paper later.

It is often useful to have a reference value to determine which values of an influence
measure are actually "large”. As suggested by Lee(1990), similar cut-offs can be used for
the measure DTi. That is, a case is identified as an influential case if absolute value of

DT\(2) is larger than kX V2(1- R ~B=L- . For moderate to large sample size n, k=2
or 3 can be used

In diagnostics, distribution theory and testing hypotheses can lead to incorrect conclusions
if more than one outliers are present. The criterion for each measure, therefore, should be
used as a rough guide to identify influential cases. The order based on each measure may
be the more important information we can get from the data, and investigation on the few
cases determined by the order would be a more reasonable approach.

2.2 Application to Real Data

The data set used to evaluate the performance of the influence measure is the Fuel data
of Weisberg(1985). There are 50 observations and 4 predictors. The response is the 1972
fuel consumption in gallons per person. The predictors variables are Tax, Dlic, Inc, and
Road. The full model and the model with minimum C, using all possible regression are
used in this evaluation.



424 =E, FAHFE, olAE, BEH

For the full model and the subset model with minimum C,, the values of the DT},
Cook’s distance, DFFITS, and COVRATIQO (covariance ratio) of notable observations are
given in Table 2.1 and Table 2.2 , respectively.

The analysis based on the influence measures leads to the following findings:
Table 2.1 :Fuel Data
Influence Measures in the Full Mode! ( * : Influential case )

case DT, Cook DFFITS | COVRATIO ri hii
Hawaii “7.73% 1.47° -3.30° | o.21° -4.77 0.32
Wyoming -0.12 0.22 1.20 0.28" 3.87 0.09
Alaska -3.37" 0.28 1.25 0.68" 2.59 0.19
New York 2.20° 0.01 -0.24 1.47° -0. 40 0.25
South Dakota 2.15° 0.13 0.81° 0.97 1.74 0.18
Other cases NV CN, IL
Influential TX
Table 2.2 : Fuel Data
Influence Measures in the Minimum C, Model { * : Influential case )
case DT, Cook DFFITS | COVRATIO ri h;
Hawaii -4. 41" 0.33 -1.12° | o0.52° -3.75 0.08
Wyoming -3.09" 0.34 1.15 0.51" 3.81 0.08
Alaska 0.37 0.37 1.11* 0.88 2.47 0.17
New York 2.37 0.00 -0.07 1.31° -0.14 0.19
South Dakota 2.27 0.20 0.79° 1.06 1.76 0.17
Other cases
Influential NV

(1) when the full model is fitted, the DT identifies Hawaii and Wyoming as influential
cases, using k=3 (marked by **) in the criterion. For k=2 (marked by *), New York
and South Dakota also pass through the cutoff value. When the subset model with
minimum C, is fitted, same observations are detected as the full model.

(2) The Cook’s distance identifies Hawaii only, when the full model is fitted. For the
minimum C, model, no case is detected as influential case. The DFFITS identified
same 5 states including Hawaii, Wyoming, and Alaska in both models. By using the
COVRATIO, Hawaii, Wyoming, and New York states are detected in both models and
4 more states are identified for the full model. From Table 2.1 and 2.2, we note that
Hawaii and Wyoming have large studentized residuals 7; in both models, but the hi’s
are quite different between those two models.

(3) Each measure identified different observations as influential cases. The Cook’s distance
detects cases conservatively. We think the COVRATIO and DT, in some degree,
detect cases in a similar way.
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3. Influence in Variable Selection

A number of measures have been proposed to identify observations with large influence
on various aspects of regression analysis, but almost all the measures have been developed
in the context of a selected model. Though some measures have been used to assess
influences on variable selection(see, Weisberg(1981), Chatterjee and Hadi(1988), and Schall
and Dunne(1990)), none of those approaches actually addresses directly the model selection
aspect of the problem.

Leger and Altman(1993) proposed an influence measure based on distance between
predicted values estimated from the full data set and those computed from the data with the
i-th case omitted For each data set, minimum C, model is chosen by all possible
regression algorithm, and is used to predict response y. For the variable selection problem,
their method measures influence on the predicted values, rather than on selected variables.
Their statistic is an extended version of Cook’s distance for variable selection problem.

3.1 The Proposed Measure for Variable Selection

In linear regression, many model selection techniques and criteria have been introduced in
the literature, for example Hocking(1976) and Thompson(1978a,b). In this paper, we restrict
our attention on "all possible regression” algorithm with minimum C, as the criterion for
automatic variable selection, and propose a statistic which assesses the influence of each
case on variable selection procedure.

For the clear discussion that follows, the subscript ” (;)"” is used to denote models and
estimates bases on Z ), and to denote vectors or matrices with the i-th row deleted. The
superscript "s”, and "1” denote the set of selected variables based on the full data set Z and
the data set without i-th case, Z (;).

In addition to these notation, the subscript "-i" is to be used to denote estimated
responses when parameters are estimated using Z) and responses y are predicted for
every case except case i For example, if minimum C, model is selected using the full data
set, but the parameters are estimated using Z(;), then the predicted values for all cases are
denoted and expressed by ¥y = X° B, while ¥ = X% B & denotes
predicted values with the i-th case omitted in the stage of estimation as well as prediction.

In the least squares regression problem (1.1), it is well known that the predicted values
and the residuals are uncorrelated That is, from the least squares fit of the model, the
following property

COV(y,e) = 0 (3.1)
is satisfied. Meanwhile, if an observation is influential on variable selection procedure, the
models selected from the full set of data and the data set without the case ( denoted by

Z(;) ) would be different from each other. Thus, the discrepancy between the two
selected models could be measured by the magnitude of the covariance between the
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predicted values from one model and the residual from the other.
We now define a statistic which measures the influence on variable selection procedure as
follows:

cs - Qo= ¥ Y- )
J()’(i) - YD yo - Y v ( Y- ¥a'C ya- ¥y
_ ) (32)
- o - ¥ G- YD)
SSlyw - $-)SSC ¥y - ¥
where ¥y = X%W B, &i-i = X' ﬁi(i), and Sli‘i is the mean of the components
.
- L= by Yk
in y'-;. Thatis, y-i = —’TI'—
In the defining equation of CS:;, SS(y - ¥°-i) and SS( &i—i - 3".'.-) are the sum of
squares of the components of vector y — ¥ -; and i - ¥, respectively.

Actually, the CS; measures the correlation between the residuals from the model selected
using Z and the fitted values from the model selected using Z (. Though different data
sets are used in varable selection, same reduced data set Z(» is used to estimate

parameters and predict responses. To measure the influence of individual points on
variable selection procedure, the discrepancy between two selected models is evaluated in
the reduced space of observations.

In practice, the influence measure CS; is computed as follows:

step 1. Using " all possible regression ” algorithm with minimum C, criterion, develop a
model based on the full data set Z, and estimate the parameters of the model
using the reduced data set in which the i-th case is omitted Using the selected
model, compute the vector of fitted values yi = X% p*(» and the residuals

ya -~ y°-; for all the cases except the i-th case.

step 2. Using the same selection method, develop a model based on the reduced data set
Zw and estimate the parameters of the selected model using Z (). Using the
model and the estimated parameters, compute the vector of fitted values
( ¥ = Xo B’ ) except the i-th case.

step 3. Using the residuals obtained in step 1 and the fitted values in step 2, compute the
statistic CS; which is the correlation between those two values.

We now consider a reference value of the proposed statistics CS; to identify influential
observations on variable selection procedure. Since the CS; computes the correlation
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between (y@ - y =) and (¥';- &i~;) and the correlation is supposed to be "zero”
when the models developed from the full set of data Z and the data set without the case
Z (i), the testing peocedure of Ho:p=0 can be used to determine a reference value of the
statistics CSi. We thus determine an individual case 2; as an influential observation on
variable selection procedure if

CSiv (n-1)-2 I (33)

N

is larger than t.-1-2(«¢) for a certain significance level d. Since the component of the two
statistics (y@- ¥ -) and (y'i- ¥'-) are not independent, the t-distribution is not
the correct sampling distribution of the statistic CS;. Therefore, the reference values from
(3.3) can be used just as a rough guide to identify influential observations. Based on our
experience, we suggest using ®=0.25 for our two-sided hypothesis as is used for the

Cook’s distance (¢ = 0.5) for his one-sided problem.

Leger and Altman (1993) also considered same problem and developed a statistic to
measure the influence of individual cases on variable selection procedure. their measure was
defined by

-5 - (i) ;4 -8 - (D
pr o= LY -y @'y~ y @)
i q*MSEF
X -x8%0 & -x 3w
q*MSE*
where q is the number of parameters in the minimum C, model selected from the full data

set and superscript "F” denotes the full model. The statistics D measure distance between

the predicted values computed from the full data set and from the data set without i-th
case. The minimum C, models from the two data sets respectively are used to predict

responses y.

The performance of the proposed measure and the unconditional Cook’s distance by
Leger and Altman will be compared and discussed by analyzing real data sets in the
following section.

3.2 Examples

In this section two data sets are analyzed to evaluate the performance of the proposed
statistic CS;, and to compare the results from the statistic CS; with those from the

unconditional Cook’s distance D?.
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Berkeley Boy’s Data:

The first data set is the data set for 26 boys from the Berkeley Guidance Study
(Weisberg, 1985). The response variable is somatotype, a measure of fatness based on a
seven-point scale, at age 18. The predictor variables are weight and height at ages 2, 9,
and 18 and leg circumference and a measure of strength at ages 9 and 18, namely
X1, X2, - ,X1. Using the full data set, the predictors Xi, X7, X1 (weight at 2, weight
at 18, strength at age 18) are selected from the "all possible regression” procedure with
minimum C, criterion.

Table 3.1: Berkeley Boy’s Data
Influence Measures ( values in CS; are multiplied by 10 )

Case ID Selected CS; DY Case ID Selected CS; D¥
variables variables
1 201 1,7,10 0.000 0.020 14 215 1,7,10 0.000 0,014
2 202 1,4,7,10 0.780 1.817 15 216 1,6,9 1.872 0.339
3 203 1,4,7,10 0.654 0.048 16 217 1,7,10 0.000 1.194
4 204 1,7.10 0.000 0.002 17 218 1,6,9 1.730 0.019
5 205 1,4,7,10 0.756 0.011 18 219 1,4,5,7,8,10 1.470 1.730
6 206 1,7,10 0.000 0.034 19 221 1,7,10 1.222 2.536
7 207 1,4,7,8,10 1.311 2.974 20 222 1,3,6,9 0.000 0.036
8 209 1,7,10 0.000 1.691 21 223 1,7,10 0.000 0.017
9 210 1,6,9 1.551 0.218 22 224 1,7,10 0.000 0.004
10 211 1,7,10 0.000 0.018 23 225 1,7,10 0.000 0,007
11 212 1,4,7,8,10 1.419 1.262 24 226 1,7,10 0.000 2.923
12 213 1,7,10 0.000 0.001 25 227 1,7,10 0.000 0,002
13 214 1,7,10 0.000 0.007 26 228 1,6,9 1.721 0.025

Table 3.1 contains the values of CS: and DY computed from the reduced data set in

which the i-th subject is deleted from the full data set. In addition to those measures,
Table 3.1 contains the variables selected from the selection procedure using the reduced
data sets where a single case is deleted one at a time. If the selected variables from the
reduced data sets are different from the variables selected from the full data set, and if the
discrepancy between those two models are significant, then the deleted case could be
identified as an influential observation for variable selection procedure. The computed values
of CS; and TS: for each individual case are shown in Figure 3.1, with the line of cutoff

value £23(0.25) = 0.685.

From the Figure 3.1 and Table 3.1, cases 210, 212, 216, 218, 219 and 228 are influential
for variable selection according to the proposed statistic CS: or 7S: . The 7TS; values of
cases 207 and 222 are slightly less than the cutoff criterion 0.685. The D{ proposed by

Leger and Altman identified all those 8 data points as influential cases on variable selection
procedure.
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Figure 3.1 ¢S; Values for the Berkeley Boy's Data

Note that the selected variables for the individual cases 210, 216, 218, 222, 228 contains
X1, X3 and/or Xe Xo. The variables selected for the cases 207, 212, and 219 contains

variables X4 and X in addition to the variables X, X7, Xio of the minimum G, model

chosen from the full data set. The correlation between X4 and Xs are large, and therefore
the problem of multi-collinearity would be involved in these cases.

Fuel Data:

The second data set is the Fuel data which was analyzed in section 2.2. Using "all
possible regression” procedure with minimum C, criterion as the model selector, the model
chosen using all 50 abservations is Dlic and Inc, namely X2 and Xs. For all but three

states (Hawaii, Wyoming, and Alaska), the selected model from the selection procedure is
the same as the model chosen using all 50 cases.

Table 3.2 Summarizes the values of CS;, DY and the variables selected for the cases
Hawaii, Wyoming, and Alaska are deleted respectively from the data set. Also, the TS;
values are given in the table. Since the cutoff value is ¢(s0-1)-2(0.25)=0.6794, only Hawaii

is influential according to the CS; or 7S;. The D! identified Hawaii and Alaska as
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influential cases on variable selection. It can be noted that the DY of Wyoming, 0.8756, is
slightly less than the cutoff value(1.0) suggested by Leger and Altman. From Table 3.2, we
note that the TS; values of Wyoming and Alaska are less than the cutoffs, 0.6794, but

those Yalues are far larger than those of other states. Though CS; identifies cases
somewhat conservatively than the DY does, the CS; values of those three states in
magnitude are distinguishable from those of other states.

Table 3.2: Fuel Data: Influence Measures

ID State Variables CSi TS; D}

50 Hawaii X1, Xz X3 0.1216  0.8895 2.4023
40 Wyoming Xz, X3 X4 0.0475 0.3337 0. 8756
49 Alaska Xs X3 X4 0.0438 0.3140 1. 0665

4. Summary and Conclusions

In this paper we have introduced an influence measure for goodness—of-fit and a
measure of influence for variable selection. The former identifies observations having large
influence on overall goodness-of —fit in a selected or tentative model, and thus is a kind of
conditional influence measure. Meanwhile, the latter identifies observations having large
influence on variable selection procedure. No tentative model is assumed for this measure.

The DTi( * ) measures influence of an individual observation on overall goodness-of-fit
directly for the assumed model, and thus almost no measure introduced so far would
entertain the same aspect of regression analysis as DT: does. As shown in Table 2.1 and

2.2, the cases identified by DT: would be somehow different from the cases detected by
other measures.

In this study, the statistic DTi( *) has been investigated whether it can be used for
the variable selection problem. We considered such a statistics, say DTz( - ), as

DTo(+) = (n-D[ R® - Rw*

where R* and R(i)Zi are the estimated RZ by fitting miminum C, model selected from
the full data set and estimating it using all the data points and by fitting minimum G,
model from the reduced data set and estimating it by reduced data set, respectively. As
noted by Leger and Altman(1993, page 547), the problem of multicollinearity may lead to
large fluctuation of the regression coefficients, so that many different models may have
very similar fit. Therefore, direct use of R® in developing an influence measure for model
selection may not result in satisfactory results, as we confirmed from the data analysis.
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The statistic CS; has been developed by using the property COV(e, y) = 0, and the
TS: has been considered to obtain a cutoff criterion by using the testing problem,
Ho:p = 0. Since the dependence among the components of the vectors which consist of
7S; would not be negligible, the cutoff value (a = 0.25) suggested in section 3.1 would
be somewhat too conservative to identify influential observations. Ordering of cases based
on the magnitudes of 7S; could be a reasonable approach to assess the impact of
individual cases.

Computing CS: and DY requires very intensive computational works. For the data set

of size n, all possible regression algorithm should be executed n+ 1 times. Though
modern computing environments make it feasible, it is needed to introduce a statistic which
execute all possible regression once, but still can measure the influence of individual cases
on variable selection procedure.
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Appendix

Derivation of equation (2.3)

Following Hample (1974), define
R*(F.) - R%(F)

di\T(z:F) = 1]551 T (A1)
where
Fy = (1-MF +\3, (A2)
and 5 is the df which puts mass 1 at the point z. It is easy to show that
L5 (F o = (y=iy (F))? - 03(F) (A3)
9 o2(Fiheo = &%~ o%(F) (A4)

where 0,,(F\) and 02(F:) are variances of Y and ¢ evaluated at df F defined in (A.2),
respectively(Serfling (1980), section 6.2.1). By subtituting (A.3)and (A.4) in the following
equation, we have

dT(z:F)

—4- R*(F))l-o

[ 2 0,,(F) 103(F) - [ =5-0X(F) Joy(F)

vay(Fl)

1=0 (A5)

(1-R*(F)) (y-u, (F))? - ¢?
cyy(F)
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