• Title/Summary/Keyword: least square

Search Result 3,121, Processing Time 0.034 seconds

A Recursive Data Least Square Algorithm and Its Channel Equalization Application

  • Lim, Jun-Seok;Kim, Jae-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.2E
    • /
    • pp.43-48
    • /
    • 2006
  • Abstract-Using the recursive generalized eigendecomposition method, we develop a recursive form solution to the data least squares (DLS) problem, in which the error is assumed to lie in the data matrix only. Simulations demonstrate that DLS outperforms ordinary least square for certain types of deconvolution problems.

Interference Cancellation Methods using the CMF(Constant Modulus Fourth) Algorithm for WCDMA RF Repeater (WCDMA 무선 중계기에서 CMF 알고리즘을 이용한 간섭 제거 방식)

  • Han, Yong-Sik;Yang, Woon-Geun
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.293-298
    • /
    • 2011
  • In the paper, we propose a new CMF(Constant Modulus Fourth) algorithm for WCDMA(Wideband Code Multiple Access) RF(Radio Frequency) Repeater. CMF algorithm is proposed by modifying the CMA(Constant Modulus Algorithm) algorithm and improved performances are achieved by properly adjusting step size values. The steady state MSE(Mean Square Error) performance of the proposed CMF algorithm with step size of 0.35 is about 4dB better than that of the conventional CMA algorithm. And the proposed CMF algorithm requires 400~1100 less iterations than the LMS(Least Mean Square) and NLMS(Normalized Least Mean Square) algorithms at MSE of -25dB.

Prediction Performance of Hybrid Least Square Support Vector Machine with First Principle Knowledge (First Principle을 결합한 최소제곱 Support Vector Machine의 예측 능력)

  • 김병주;심주용;황창하;김일곤
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.744-751
    • /
    • 2003
  • A hybrid least square Support Vector Machine combined with First Principle(FP) knowledge is proposed. We compare hybrid least square Support Vector Machine(HLS-SVM) with early proposed models such as Hybrid Neural Network(HNN) and HNN with Extended Kalman Filter(HNN-EKF). In the training and validation stage HLS-SVM shows similar performance with HNN-EKF but better than HNN, whereas, in the testing stage, it shows three times better than HNN-EKF, hundred times better than HNN model.

An Application of the Instrumental Variable Method(IVM) to a Parameter Identification of a Noise Contaminated Bearing Test Rig (IV 방법을 이용한 잡음이 포함된 베어링 실험 장치의 동특성 파라미터 추출)

  • 이용복;김창호;최동훈
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.679-684
    • /
    • 1996
  • The Instrumental Variable Method(IVM), modified from least square algorithm, is applied to parameter identification of a noise contaminated bearing test rig. The signal to noise ratio included in Frequency Response Function(FRF) can cause significant errors in parameter identification. Therefore, among several candidates of parameter identification method, results of the applied IVM were compared with noise-contaminated least square method. This study shows that the noise-contaminated least square method can have indonsistent accuracy depending on the degree of noise level, while the IVM has robuster performance to signal to noise ratio than least square method.

  • PDF

An Adaptive Speed Estimation Method Based on a Strong Tracking Extended Kalman Filter with a Least-Square Algorithm for Induction Motors

  • Yin, Zhonggang;Li, Guoyin;Du, Chao;Sun, Xiangdong;Liu, Jing;Zhong, Yanru
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.149-160
    • /
    • 2017
  • To improve the performance of sensorless induction motor (IM) drives, an adaptive speed estimation method based on a strong tracking extended Kalman filter with a least-square algorithm (LS-STEKF) for induction motors is proposed in this paper. With this method, a fading factor is introduced into the covariance matrix of the predicted state, which forces the innovation sequence orthogonal to each other and tunes the gain matrix online. In addition, the estimation error is adjusted adaptively and the mutational state is tracked fast. Simultaneously, the fading factor can be continuously self-tuned with the least-square algorithm according to the innovation sequence. The application of the least-square algorithm guarantees that the information in the innovation sequence is extracted as much as possible and as quickly as possible. Therefore, the proposed method improves the model adaptability in terms of actual systems and environmental variations, and reduces the speed estimation error. The correctness and the effectiveness of the proposed method are verified by experimental results.

SIZE OPTIMIATION OF AN ENGINE ROOM MEMBER FOR CRASHWORTHINESS USING RESPONSE SURFACE METHOD

  • Oh, S.;Ye, B.W.;Sin, H.C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.93-102
    • /
    • 2007
  • The frontal crash optimization of an engine room member using the response surface method was studied. The engine room member is composed of the front side member and the sub-frame. The thicknesses of the panels on the front side member and the sub-frame were selected as the design variables. The purpose of the optimization was to reduce the weight of the structure, under the constraint that the objective quantity of crash energy is absorbed. The response surface method was used to approximate the crash behavior in mathematical form for optimization procedure. To research the effect of the regression method, two different methodologies were used in constructing the response surface model, the least square method and the moving least square method. The optimum with the two methods was verified by the simulation result. The precision of the surrogate model affected the optimal design. The moving least square method showed better approximation than the least square method. In addition to the deterministic optimization, the reliability-based design optimization using the response surface method was executed to examine the effect of uncertainties in design variables. The requirement for reliability made the optimal structure be heavier than the result of the deterministic optimization. Compared with the deterministic optimum, the optimal design using the reliability-based design optimization showed higher crash energy absorption and little probability of failure in achieving the objective.

The difference of selectivity of gill net between least square method with polynomials in Kitahara's and maximum likelihood analysis (자망 선택성에서 다항식을 사용한 경우의 Kitahara에 의한 최소제곱법과 최우법의 차이)

  • Park, Hae-Hoon;Millar, Russell B.;Bae, Bong-Seong;An, Heui-Chun;Hwang, Seon-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.3
    • /
    • pp.223-231
    • /
    • 2010
  • This paper showed the difference between the selectivity of gill net by least square method with polynomials in Kitahara's and that by maximum likelihood analysis for Japanese sandfish and Korean flounder. Catch experiments for Japanese sandfish using commercial vessels off the eastern coast of Korea were conducted with six different mesh sizes between October and December 2007 and those for Korean flounder with five different mesh sizes between 2008 and 2009. The mesh size of 50% probability of catch corresponding to biological maturity length of fish was not different between that by least square method and that by maximum likelihood analysis for Japanese sandfish, however, a little different for Korean flounder, that is, those mesh sizes of 50% probability of catch for biological maturity length of Korean flounder were 10.6cm and 10.1cm by least square method and maximum likelihood analysis, respectively.

Pre-Alignment Using the Least Square Circle Fitting (Least Square Circle Fitting을 이용한 Pre-Alignment)

  • Lee, Nam-Hee;Cho, Tai-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.410-413
    • /
    • 2009
  • Wafer pre-alignment is to find the center and the orientation of a wafer and to move the wafer to the desired position and orientation. In this paper, an area camera based pre-aligning method is presented that captures 8 wafer images regularly during 360 degrees rotation. From the images, wafer edge positions are extracted and used to estimate the wafer's center and orientation using least square circle fitting. These information are utilized for the proper alignment of the wafer.

  • PDF

Optimization of Thinned Antenna Arrays using a Least Square Method

  • Chang Byong Kun;Dae Jeon Chang
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.165-168
    • /
    • 1999
  • This paper concerns a least square approach to optimizing a thinned antenna array with respect to antenna spacing to improve the sidelobe performance. A least square method based on a modified version of the modified perturbation method is proposed to efficiently synthesize an optimum pattern in a thinned array. It is demonstrated that the array performance improves with the proposed method, compared with the conventional method.

  • PDF

A Nonparametric Additive Risk Model Based on Splines

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.1
    • /
    • pp.97-105
    • /
    • 2007
  • We consider a nonparametric additive risk model that is based on splines. This model consists of both purely and smoothly nonparametric components. As an estimation method of this model, we use the weighted least square estimation by Huller and Mckeague (1991). We provide an illustrative example as well as a simulation study that compares the performance of our method with the ordinary least square method.

  • PDF