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Abstract 
 

To improve the performance of sensorless induction motor (IM) drives, an adaptive speed estimation method based on a strong 
tracking extended Kalman filter with a least-square algorithm (LS-STEKF) for induction motors is proposed in this paper. With 
this method, a fading factor is introduced into the covariance matrix of the predicted state, which forces the innovation sequence 
orthogonal to each other and tunes the gain matrix online. In addition, the estimation error is adjusted adaptively and the 
mutational state is tracked fast. Simultaneously, the fading factor can be continuously self-tuned with the least-square algorithm 
according to the innovation sequence. The application of the least-square algorithm guarantees that the information in the 
innovation sequence is extracted as much as possible and as quickly as possible. Therefore, the proposed method improves the 
model adaptability in terms of actual systems and environmental variations, and reduces the speed estimation error. The 
correctness and the effectiveness of the proposed method are verified by experimental results. 
 
Key words: Adaptive speed estimation, Fading factor, Induction Motor (IM), Least-Square (LS) algorithm, Strong Tracking 
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NOMENCLATURE 

α, β Stationary reference frame axes. 
d, q Rotary reference frame axes. 
a, b, c Three-phase reference frame axes. 
isα, isβ α-Axis and β-Axis stator currents, A. 
isd, isq d-Axis and q-Axis stator currents, A. 
ia, ib, ic a-Axis, b-Axis and c-Axis stator currents, A.
usα, usβ α-Axis and β-Axis stator voltages, V. 
usd, usq d-Axis and q-Axis stator voltages, V. 
ψrα, ψrβ α-Axis and β-Axis rotor flux linkages, Wb. 
Vdc DC link voltage, V. 

*  Reference quantity. 

J Moment of inertia. 
θ Rotor position. 
ωsl Slip frequency, rad/s. 
ωr Angular rotor speed, rad/s. 

Lm Mutual inductance, H. 

Lsσ Stator leakage inductance, H. 
Lrσ Rotor leakage inductance, H. 
Ls, Lr Stator and rotor inductances, H. 
σ (=1-(Lm

2/LsLr)) Total leakage coefficient. 
σ r Rotor leakage coefficient. 
σs Stator leakage coefficient.  
Rs, Rr Stator and rotor resistances, Ω. 
Tr (=Lr/Rr) Rotor time constant. 
T Sampling period, μs. 
vk System noise. 
wk Measurement noise. 
TL Rated torque, N·m. 
P Pole pair. 
PN Rated power, kW. 
UN Rated voltage, V. 
IN Rated current, A. 
fN Rated frequency, Hz. 

 

I. INTRODUCTION 

Induction motors (IM) have many advantageous 
characteristics, such as high robustness, reliability and low 
cost compared with DC motors. The installation of speed 
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sensors increases the cost, and reduces the robustness and the 
reliability of induction motor (IM) drives. Therefore, a lot of 
attention has been paid to rotor speed estimation to achieve 
sensorless control. Many sensorless methods have been 
proposed, such as high-frequency signal injection [1], [2], 
model reference adaptive systems (MRAS) [3], [4], full-order 
adaptive observers [5]–[7], sliding-mode observers (SMO) 
[8], [9], artificial neural networks (ANN) [10], and extended 
Kalman filters (EKF) [11]–[29].  

References [1] and [2] use a method to estimate speed 
based on high-frequency signal injection, and they obtain 
good performance. The speed sensorless control methods 
based on signal injection are capable of long-term stability at 
zero stator frequency. However, they are highly sophisticated 
and require customized designs for a particular motor drive, 
and there are estimated speed delays to the rotor speed due to 
the filter. Reference [3] presents a closed-loop model 
reference adaptive system (CL-MRAS), and a speed observer 
is developed for linear induction motor (LIM) drives. A new 
formulation of the reactive-power-based MRAS that is stable 
in all four quadrants of operation is proposed in [4]. However, 
in these studies, with respect to sensorless IM drives, the 
rotor flux and load torque should be known to realize the 
sensorless controller. Moreover, these observers usually lose 
effectiveness or give inaccurate results due to the fact that 
they lack observability at low speeds. In [5], [6] and [7], new 
design rules for the adaptation of PI gains to satisfy the 
required performances are proposed. The robustness of the 
adaptive full-order observer against stator resistance and 
inductance variations is also investigated. However, the speed 
fluctuations becomes large as the speed decreases. In [8] and 
[9], a SMO is used to estimate speed and to identify the stator 
resistance and overcome the problems of stator resistance 
variations, particularly for low-speed operation. However, 
since the scheme is designed based on a mathematical model 
of an IM, its observability is generally lost at zero magnetic 
field frequency, and the SMO experiences chattering. In [11], 
a new method based on ANNs applied to the parameter 
estimation of induction motors using sensorless vector 
control is proposed. Results obtained with this observer are 
more efficient than the results obtained with the classical 
observer. 

Unlike the other methods, the EKF takes a stochastic 
approach to state estimation. In spite of its computational 
complexity, the EKF makes on-line state estimation possible 
while simultaneously performing the identification of 
parameters in a relatively short time interval, while taking the 
system and measurement noises directly into account. 
Recently, the EKF has been studied widely in terms of the 
speed sensorless control of motors. In [11] and [12], an EKF 
is used for speed and flux linkage estimation in direct torque 
control systems. Experimental results show that the systems 
based on the EKF have good performance and applicable 

value. In [13] and [14], an EKF is used as a speed and 
position estimator in the vector control system of PMSMs. 
The control bandwidth is enhanced and the identification 
problems due to the low-order state equations of IPMSMs 
can be avoided, and the estimation error of the rotor position 
based on the identified permanent magnet flux is limited to 
within a very low level. In [15] and [16], the torque and 
position are estimated by an EKF in a stepper motor. This 
method can cancel the static error and compensate load 
torque variations. In addition, good position estimation can be 
achieved. Because of the massive calculation with a 
five-order matrix, most of the research results are only 
verified by simulations. In order to apply it to practice, a 
reduced-order EKF algorithm for flux and speed estimation is 
proposed in [17] and [18], and the speed and flux linkage are 
estimated easily. In [19], an EKF has been used to estimate 
the rotor speed, rotor flux, stator flux and stator currents 
accurately in the vector control systems of the induction 
motors, and a small stator current THD is confirmed. 
Depending on the commanded speed, either the rotor current 
model or the open-loop stator voltage model is proposed for 
an EKF to achieve better performance in a wide speed range, 
including the field-weakening region. Reference [20] presents 
a novel sensorless stator-flux-oriented sliding-mode scheme 
based on an offline optimized-delayed state Kalman filter 
algorithm to estimate the stator-flux components and the rotor 
speed in IMs, and it obtains good performance. In [21], the 
application of optimal state estimation and optimal state 
feedback algorithms based on an EKF for real-time active 
magnetic bearing control is treated. It is shown that the 
controller yields more accurate rotor position estimation, 
better system dynamics, higher bearing stiffness, and reduced 
control energy effort compared with the conventionally used 
proportional-integral-differential control approaches. In [22] 
and [23], a parameter estimator based on an EKF is used to 
estimate the rotor resistance and mutual inductance. The 
results motivate the utilization of the proposed estimation 
technique in combination with a variety of control methods 
for IMs. 

However, the extended Kalman filter is poorly robust 
against model uncertainties, which results in inaccuracy in 
terms of EKF state estimations when the model mismatches, 
and it can even cause the system to diverge [24]. When the 
system reaches the stable state, the Kalman gain and the error 
covariance matrix are limited to within a low level, and the 
tracking ability to the mutations is lost. The EKF cannot track 
these changes quickly when the external environment is 
mutated. The main contribution of this paper is that an 
adaptive speed estimation method for induction motors based 
on a strong tracking EKF with the least-square algorithm 
(LS-STEKF) is proposed to improve model adaptability to 
actual systems and environment variations, and to reduce the 
speed estimation error. With this method, the fading factor is 
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introduced into the covariance matrix of the predicted state, 
which force the innovation sequence orthogonal to each other 
and tunes the gain matrix online. In addition, the estimation 
error is adjusted adaptively and the mutational state is tracked 
quickly. Simultaneously, the proposed method tunes the 
fading factor by extracting information from the innovation 
sequence as much as possible with the least-square algorithm. 
The correctness and effectiveness of the proposed method are 
verified by experimental results. 
 

II. EKF OBSERVER FOR INDUCTION MOTORS 

The mathematical model of an induction motor can be 
described by the following equations: 
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Models (1)-(6) are nonlinear and multivariable, and they 
are affected by parametric uncertainties. Moreover, the load 
torque TL is unknown. For speed estimation, an approach is 
based on the assumption that speed varies slowly with 
respect to electromagnetic variables. It is suggested that 

0r   should be substituted in (5) to obtain a fifth-order 

model.  
The mathematical models of an induction motor are 

described by (1)-(6) when r  is known. However, r  is 

unknown in sensorless control, and the resulting model is 
nonlinear. 

The system equation and observer equation are supposed 
to be linear for Kalman filters. However, the actual system 
cannot satisfy this supposition. Nonlinear systems can 
approximate linear systems with EKFs, and the calculation 
precision is enhanced with this algorithm. The EKF is 
formulated as follows: 

 
ˆ

ˆ ˆ( )
dx

= Ax + Bu + K y - y
dt

           (7) 

ˆ ˆy = Hx                   (8) 

where x̂  is the state variable, ŷ  is the observation 

variable, u is the control variable, y is the actual 
measurement value, A is the state matrix, B is the input 
matrix, H is the observation matrix, and K is the gain matrix.  

For the EKF, some unmeasured variables can be calculated 
from the measured value. Generally, the stator voltage and 
stator current are set to be the measured vector, namely u=us, 
y=is.  

From models (7) and (8), the EKF is explained using the 
following nonlinear time-invariant state model: 

ˆ ˆ ˆ( )k k k kk k -1x = A x + B u + K y - y
        

(9) 

ˆ ˆ
k k ky H x

               
(10) 

where Ak, Bk, and Hk  are the discretized matrixes of A, B, 

and H, respectively.  is the prediction, and ̂  is the 
updated value. 
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T is the sampling period, and a suitable distance of the 
sampling period to the system electric constant is kept. vk is 
the system noise, and wk is the measured noise. 
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Both vector wk and vector vk are zero-mean Gaussian white 
sequences with a zero cross correlation with each other, and 
Q and R are positive definite matrices. The covariance matrix 
of the system noise Q accounts for the model inaccuracy, the 
system disturbances, and the noise introduced by voltage 
measurements (sensor noise and A/D converter quantization). 
The covariance matrix of the measurement noise R accounts 
for the measurement noise introduced by the current sensors 
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and A/D quantization. 
In many cases, saturation is taken into account. It is 

assumed that saturation leads to a decrease in the mutual 
inductance Lm. Consequently, saturation affects the values of 
the rotor and stator inductances given by: 

r r mL L L                  (14) 

s s mL L L                  (15) 

In the EKF, deviation is used to feedback correction, and 
the specific process includes following steps: 
1)  Prediction of the state variable: 
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3)  Calculation of the Kalman filter gain matrix: 
1( )T T

k k k k k k k
  K P H H P H R          (18) 

4)  Update of the state prediction variable: 

ˆ ( )k k k k k k   x x K y H x           (19) 

5)  Update of the error covariance matrix k̂P : 
ˆ ( )k k k k  P I K H P

            
 (20) 

 

III. STEKF OBSERVER WITH THE LEAST-SQUARE 

ALGORITHM 

In the EKF, a nonlinear system can be approximated by a 
linear system and the basic form of a linear Kalman 
equations is kept. Because the Kalman gain can adapt to the 
environment for adjustments, the EKF has some adaptive 
ability. However, the EKF is poorly robust against model 
uncertainties, which results in inaccuracy of EKF state 
estimations, and can even cause the system to diverge. When 
the system reaches a stable state, the Kalman gain and the 
error covariance matrix are limited to within a small value, 
and the tracking ability to the mutations is lost. The EKF 
cannot track these changes quickly when the external 
environment is mutated. An adaptive speed estimation 
method based on a strong tracking EKF with the least-square 
algorithm (LS-STEKF) for induction motors is proposed to  
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Fig. 1. Block diagram of speed estimation based on STEKF. 

 
solve the above problems. With this method, the fading 
factor is introduced into the covariance matrix of the 
predicted state, which forces the innovation sequence 
orthogonal to each other and tunes the gain matrix online. 
The estimation error is adjusted adaptively, and the 
mutational state is tracked quickly. Simultaneously, the 
proposed method searches for the fading factor with the 
least-square algorithm, which makes the information in the 
innovation sequence extract as much as possible and as 
quickly as possible. The proposed method shows more 
robustness against the model uncertainties or time-varying 
parameter systems, and it has better tracking ability in the 
presence of mutations and slow changes. Therefore, the 
proposed method improves the model adapt to actual systems 
and environmental variations, and reduces the speed 
estimation error. A block diagram of the speed estimation 
based on the STEKF is shown in Fig. 1. 

A. STEKF for Rotor Speed Estimation 

The state estimation issue which the strong tracking EKF 
solves is described as follows: 
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The innovation sequence between the measured value and 

the predicted value is as follows: 
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Equation (24) and (25) are required for ensuring that the 
innovation sequence remains orthogonal. The fading factor is 
incorporated for the online tuning of the covariance matrix of 
the predicted state, which adjusts the filter gain, and 
accordingly the STEKF is developed. The fading matrix can 
be expressed as follows: 

1 2[ , , , ]MD n
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Compared with the EKF, the prediction error covariance 
matrix of the STEKF becomes as follows: 
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βi is a constant determined by prior information, where βi ≥ 
1. ck is the undetermined factor.  is the forgetting factor, 

where 0 1  . A forgetting factor of 0.95 is commonly 

used in the STEKF. The modeling error can be reduced by 
adjusting γk in a timely manner to obtain almost the same 
mean tracking errors for the STEKF, which is also indicated 
by other studies. 

The fading factor γk in the STEKF method increases the 
accuracy of the state estimation model, according to the 
extent determined by the information in the innovation 
sequence. When fast environmental variations and parameter 
variations produce γk > 1 due to the magnitude innovations, 
the STEKF provides an appropriate factor γk to improve the 
adaptive ability to the actual systems, subsequently yielding 
an accurate speed estimation. When the system under normal 
conditions yields γk = 1 owing to the accuracy of the state 
estimation model, the STEKF becomes the standard EKF, 
and yields an accurate speed estimation.  

B. Analysis of Seeking Mechanism for the Fading Factor  

It can be seen from (29) that: 
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Equation (33) can be rewritten as follows: 
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From (29) and (35), the denominator is not affected by εk, 
and ck only depends on εk. The magnitude of the output yk is 
relatively large in the actual practice. However, the estimated 
results are directly affected by εk, and the absolute value of 
the residuals is very different when the relative residuals are 
equal, which results in residual information asymmetry. 
Therefore, the estimation precision and response speed are 
reduced. This is due to the fact that the traditional suboptimal 
algorithm is applied to reduce the calculating work online 
when searching for the fading factor, and the algorithm only 
extracts information of the diagonal elements in Mk and Nk, 
and ignores the other information. In order to improve the 
estimation precision and the response speed, the proposed 
method searches for the fading factor in the STEKF with the 
least-square algorithm. 

C. Parameter Identification Principles of the 
Least-Square Algorithm 

The system equations can be expressed as: 
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Equation (39) can be organized as follows: 
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From (40), S consists of two parts: 
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k k k k k k k

       z z z z                              

Part 1 is positive, and part 2 has no correlation with .k
h  

Therefore, in order to make S minimum, part 1 has to be zero. 
Thus: 

0T T
k k k k k h z               (41) 

The estimated value is obtained by: 
1( )T T

k k k k k
   h z             (42) 
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Fig. 2. Speed estimation structure based on LS-STEKF. 

 

D. STEKF with the Least-Square Algorithm to Tune the 
Fading Factor 

According to the above analysis, an adaptive approach 
with the least-square algorithm is used to tune the fading 
factor, and the structure of the LS-STEKF is shown in Fig. 2. 

The theory innovation variance should match the real-time 
identification variance. Thus: 

1
ˆMD T T T

k k k k k k k k k k k   H L G P G H V R H Q H
      

(43)
                 

 

   
 1 2,MD

k k nc diag    ，L
           

(44) 

k k kcN                    (45) 

where: 

1
ˆ= T T

k k k k k k H βG P G H            (46)
        

 
 1 2, ndiag    ，

            
(47)

             
 

According to αk and Nk, the vectors can be structured as 
follows: 

 

 

 

 

1,1

1,

,1

,

k

k

k

k

k

m

m

m m
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 
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N

N

N

N


   

(48)  

 

 

 
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1,1

1,
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,

k

k

k

k

k

m

m

m m
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 
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 
 
 
 
















  
(49)

 

By least-square algorithm, ck is given by:

  

 
   

 

1

, 1

2

, 1

=

, ,

   =
,

T T
k k k k k

m

k k
i j

m

k
i j

c

i j i j

i j











   





N

            
(50) 

Only the diagonal elements of Mk and Nk are used in (29). 
However, all of the elements are used based on the 
least-square algorithm, which means that more information is 
used to tune the fading factor, and ck, optimized by 
least-square algorithm, is used to tune the fading factor γk.  

It is the essence of the sensorless vector control that the 
motor speed is not acquired by a mechanical sensor, but  


















r
r

*
sdu

*
squ

si 

*
di

*
qi

abc

dq

sl

r

r
r


qi

di

dq ai
bi

ci

*
su 

*
su 

si 







dcV

si 

si 

 

Fig. 3. Block frame of sensorless vector control based on 
LS-STEKF. 

 
rather by software in a speed regulating system. A block 
diagram of the sensorless vector control system for induction 
motors is shown in Fig. 3. 

The voltage and phase current of the induction motor are 
transformed to the α-β coordinate system. The voltage and 
current based in the α-β coordinate system are the inputs of 
the LS-STEKF estimator. The rotor speed is estimated and 
fed back to the PI controller. The control voltages (usα*, usβ*) 
are transformed to usd and usq, which are the outputs of the PI 
controller. At last, the outputs of the SVPWM are loaded into 
a PWM inverter to regulate the induction motor. The outputs 
are the speed, current and flux based on the α-β coordinate 
system. 

 

IV. EXPERIMENTAL RESULTS 

In order to validate the performance of the estimator, the 
above speed estimation methods are implemented on a 
control platform based on a TMS320F28335. The parameters 
of the induction motor are shown in TABLE I, and the 
experimental platform is shown in Fig. 4. The system 
hardware consists of an induction motor, an IM inverter, a 
loading system, and an oscilloscope. The loading system 
includes a loading servo motor and a servo inverter. The 
induction motor is driven by the inverter. The stator voltage, 
stator current and rotor speed are measured by a Hall effect 
voltage sensor, a Hall effect current sensor and a 
photoelectric coder, respectively. 

The system software process includes the initialization, 
main loop, fault protection, PWM interrupt, etc. The period 
of the PWM interrupt is 125 μs, and the main functions 
include the coordinate transformation, LS-STEKF algorithm, 
dead time compensation, SVPWM generation, etc. 

The covariance matrices Q and R are taken to be diagonal. 
If a large value of the matrix R is used, the transient response 
decreases but the state is well estimated in the steady state. 
As shown in (18), the matrices K and R are inversely  
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TABLE І 
MOTOR PARAMETERS 

 
 

Control board 

Keyboard 

IM 

Loading servo motor 

Servo inverter 

Main circuit 

Emulator 

 
Fig. 4. Experimental platform. 

 
proportional. Therefore, the value of K becomes weak in 
order to give more accuracy to the estimation of the state. 
Otherwise, the overshoot in the transient response and the 
noises in the steady-state response are obtained. In both cases, 
R acts on the transient response and the steady-state response 
because its value is constant in the EKE algorithm. The 
covariance matrix Q represents the noises on the system due 
to the modeling errors. From (17) and (18), the matrix K is 
proportional to the matrix Q. Then, it has the opposite effect 
of that of R. Under the premise to ensure convergence, the 
choice of every values for these matrices is done according to 
the dynamics of the state variables and the performance 
index. The value of the Q and R matrices for the  

EKF and the LS-STEKF are [0.1,0.1],diagR
  2 2 3 3[2 10 , 2 10 , 2 10 , 2 10 ,1]diag        Q . 

A. Experimental Verification for Speed Estimation during 
Full Speed and Low Speed 

When the motor runs at different speeds, experimental 
results based on the LS-STEKF are shown in Fig. 5. The 
estimated speed and the speed estimation error are given from 
top to bottom. It can be seen that the motor runs at six stages, 
including 30 r/min, 300 r/min, 900 r/min, 1500 r/min, 1200 
r/min and 600 r/min, respectively, which contain the full 
range of running speeds. This indicates that the proposed 
method has good tracking performance.  

Fig. 6 shows the estimated speed response based on the 
LS-STEKF at a step speed from +15 r/min to +150 r/min. 
The step reference speed, the estimated speed, and the speed 
estimation error are given from top to bottom. This shows  
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Fig. 5. Speed tracking performance in whole operation based on 
LS-STEKF. 
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Fig. 6.  Speed tracking performance at step speed from +15 
r/min to +150 r/min. 
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Fig. 7.  Estimated speed and stator current at switching point of 
reversal.  

 
that the LS-STEKF can quickly respond to step reference 
speed changes, and has good tracking performance in the low 
speed range. 

Fig. 7 shows the estimated speed and stator current based 
on the LS-STEKF when the given speed ranges from +1500 
r/min to -1500 r/min. The estimated speed, the speed 
estimation error, and the u-phase current are given from top 
to bottom. This indicates that in the process of the motor 
speed reversal, the current waveform has no oscillation or 
transition. In addition, the estimated speed based on the 
LS-STEKF remains stable, and smooth switching is achieved 
on the zero-crossing position. 

Fig. 8 shows the estimated speed and the stator current 
based on the LS-STEKF at 9 r/min. The estimated speed, the 
speed estimation error, and the u-phase current are given 
from top to bottom. It can be seen that the stator current is  
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Fig. 8. Estimated speed and stator current at 9 r/min. 
 

 
Fig. 9. Experimental results based on LS-STEKF at 9 r/min with 
step load from 0 to 100% rated torque. 

 
close to sine, and that the motor can operate stably at low 
speeds. 

Fig. 9 shows experimental results based on the LS-STEKF 
at 9 r/min with a step load from 0 to 100% of the rated torque. 
The rotor speed, the speed estimation error, and the u-phase 
current are given from top to bottom. It can be seen that the 
motor speed can track the given speed again very soon after 
the load changes rapidly, and that the motor can run stably at 
low speeds with 100% of the rated load. Therefore, the 
LS-STEKF has good dynamic performance against step loads 
at low speeds. 

Figs. 5-9 demonstrate the correctness of the speed 
estimation system based on LS-STEKF. 

B. Robustness to Motor Parameter Mismatches 

Fig. 10 shows the estimated speed and the speed estimation 
error of the EKF and the LS-STEKF at 30 r/min with 1.3Rs. 
The estimated speed and the speed estimation error are given 
from top to bottom. Fig. 10(a) shows experimental results 
based on the EKF, and Fig. 10(b) shows experimental results 
based on the LS-STEKF. As shown in Fig. 10, the estimated 
speed based on the EKF has a larger fluctuation than that of 
the LS-STEKF with a mismatched Rs. At the same time, the 
maximum error of the speed estimation is reduced to 4 r/min 
from 8 r/min based on the LS-STEKF when Rs mismatches. 

Fig. 11 shows the estimated speed and speed estimation 
error of the EKF and the LS-STEKF at 30 r/min with 0.7Rs. 
The estimated speed and the speed estimation error are given 
from top to bottom. Fig. 11(a) shows the experimental results 
based on the EKF, and Fig. 11(b) shows the experimental 
results based on the LS-STEKF. From the experimental  
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(a)                        (b)    

Fig. 10. Experimental comparison of the estimated speed and the 
speed estimation error at 30 r/min with 1.3Rs. (a) EKF. (b) 
LS-STEKF. 
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Fig. 11. Experimental comparison of the estimated speed and the 
speed estimation error at 30 r/min with 0.7Rs. (a) EKF. (b) 
LS-STEKF. 

 
results, it can be seen that the estimated speed based on the 
EKF has a large fluctuation with a mismatched Rs, and that 
the maximum error of the speed estimation is 10 r/min. 
However, the speed estimation fluctuation based on the 
LS-STEKF is rather small, and the maximum error of the 
speed estimation is reduced to 5 r/min. 

Fig. 12 shows the estimated speed and speed estimation 
error of the EKF and the LS-STEKF at 30 r/min with 1.3Lm. 
The estimated speed and the speed estimation error are given 
from top to bottom. Fig. 12(a) shows the experimental results 
based on the EKF, and Fig. 12(b) shows the experimental 
results based on the LS-STEKF. It can be seen that the 
estimated speed based on the EKF has a larger fluctuation 
than that of the LS-STEKF with a mismatched Lm. In addition, 
the maximum error of the speed estimation is reduced to 3 
r/min from 7 r/min based on the LS-STEKF. 

Fig. 13 shows the estimated speed and speed estimation 
error of the EKF and the LS-STEKF at 30 r/min with 0.7Lm. 
The estimated speed and the speed estimation error are given 
from top to bottom. Fig.13(a) shows the experimental results 
based on the EKF, and Fig. 13(b) shows the experimental 
results based on the LS-STEKF. It can be seen that the 
estimated speed based on the EKF has a large fluctuation 
with a mismatched Lm. In addition, the maximum speed 
estimation error is 8 r/min. However, the speed estimation 
fluctuation of the LS-STEKF is rather small, and the 
maximum error of the speed estimation is reduced to 4 r/min. 

Figs. 10-13 indicate that the EKF is more sensitive to 
motor parameter mismatches, and that the LS-STEKF has 
better robustness to motor parameter mismatches.  
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               (a)                       (b)                                                              
Fig. 12. Experimental comparison of the estimated speed and the 
speed estimation error at 30 r/min with 1.3Lm. (a) EKF. (b) 
LS-STEKF. 
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Fig. 13. Experimental comparison of the estimated speed and the 
speed estimation error at 30 r/min with 0.7Lm. (a) EKF. (b) 
LS-STEKF. 

 

C. With a Gross Estimation Error 

Fig. 14 shows the estimated speed and speed estimation 
error of the EKF and the LS-STEKF when an error vector 
which is [1 0 0 0 0]T is added to x, and the given speed is 
1500 r/min. The estimated speed and the speed estimation 
error are given from top to bottom. Fig. 14(a) shows the 
experimental results based on the EKF, and Fig. 14(b) shows 
the experimental results based on the LS-STEKF. It can be 
seen that the maximum fluctuation of the estimated speed and 
the maximum error of the speed estimation are obviously 
reduced when a gross estimation error occurs. The maximum 
fluctuation of the estimated speed is reduced to 25 r/min from 
125 r/min, and the maximum error of the speed estimation is 
reduced to 20 r/min from 50 r/min. Therefore, the LS-STEKF 
has better anti-estimation-error capability than the EKF. 

D. With a Gross External Disturbance 

In order to test the anti-error capability of the LS-STEKF, 
a disturbance pulse valued at 2 A is added to the current 
detection channels by a signal generator when the given 
speed is 1500 r/min. Fig. 15 shows the estimated speed and 
the speed estimation error of the EKF and the LS-STEKF. 
The estimated speed and the speed estimation error are given 
from top to bottom. Fig. 15(a) shows the experimental results 
based on the EKF, and Fig. 15(b) shows the experimental 
results based on the LS-STEKF. From the experimental 
results, it can be seen that the maximum fluctuation of the 
estimated speed is reduced to 30 r/min from 135 r/min, and 
that the maximum error of the speed estimation is reduced to 
25 r/min from 60 r/min. Therefore, the LS-STEKF has better  
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(a)                       (b)                      

Fig. 14. Experimental comparison of the estimated speed and the 
speed estimation error at 1500 r/min with gross estimation error. 
(a) EKF. (b) LS-STEKF. 
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(a)                       (b)                      

Fig. 15. Experimental comparison of the estimated speed and the 
speed estimation error at 1500 r/min with gross external 
disturbance. (a) EKF. (b) LS-STEKF. 
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(a)                        (b)  

Fig. 16. Experimental comparison of the speed estimation error 
with the speed slew rate of 1500 r/min/s at deceleration and 
acceleration under 80% rated load. (a) EKF. (b) LS-STEKF.  
 

anti-error capability than the EKF. 

E. Dynamic Performance Verification at Fast and Slow 
Speed Slew Rates with a Load 

Fig. 16 shows a speed estimation error comparison with 
the EKF and the LS-STEKF at fast speed deceleration and 
acceleration with a 80% rated load, and a speed slew rate of 
1500 r/min/s. The rotor speed and the speed estimation error 
are given from top to bottom. Fig. 16(a) shows the 
experimental results based on the EKF, and Fig. 16(b) shows 
the experimental results based on the LS-STEKF. It can be 
seen that the maximum speed estimation error is obviously 
reduced based on the LS-STEKF at a speed slew rate of 1500 
r/min/s, and the maximum error of the speed estimation is 
reduced to 30 r/min from 75 r/min. 

Fig. 17 shows a speed estimation error comparison with 
the EKF and the LS-STEKF at slow speed acceleration and 
deceleration with an 80% rated load, and a speed slew rate of 
200 r/min/s. The rotor speed and the speed estimation error  
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               (a)                        (b)       
Fig. 17.  Experimental comparison of the speed estimation error 
with the speed slew rate of 200 r/min/s at deceleration and 
acceleration under 80% rated load. (a) EKF. (b) LS-STEKF. 
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Fig. 18.  Experimental comparison of the speed estimation error 
at 1500 r/min with step load disturbance from 0 to 100% rated 
torque. (a) EKF. (b) LS-STEKF. 

 
are given from top to bottom. Fig. 17(a) shows the 
experimental results based on the EKF, and Fig. 17(b) shows 
the experimental results based on the LS-STEKF. The motor 
decelerates from 1500 r/min to 750 r/min and then 
accelerates to 1500 r/min. From the experimental results, the 
maximum error of the speed estimation is reduced to 12 
r/min from 25 r/min with the LS-STEKF during the whole 
speed deceleration and acceleration. 

Fig. 16 and Fig. 17 show that the superiority of the 
LS-STEKF is that it has better dynamic performance than the 
EKF at both fast and slow speed slew rates with a load. 

F. Dynamic Performance Verification with a Step Load  

Fig. 18 shows a speed estimation error comparison with the 
EKF and the LS-STEKF at 1500 r/min with a step load 
disturbance from 0 to 100% of the rated torque. The rotor 
speed, the speed estimation error, and the u-phase current are 
given from top to bottom. Fig. 18(a) shows the experimental 
results based on the EKF, and Fig. 18(b) shows the 
experimental results based on the LS-STEKF. It can be seen 
that the speed estimation error is obviously reduced based on 
the LS-STEKF during the entire operation with the step load 
disturbance, and that the maximum error of the speed 
estimation is reduced to 40 r/min from 90 r/min. Therefore, 
the LS-STEKF is effective for sensorless control and has 
better dynamic tracking performance than the EKF at high 
speeds with a step load. 

Fig. 19 shows a speed estimation error comparison with 
the EKF and the LS-STEKF at 150 r/min with a step load 
disturbance from 0 to 100% of the rated torque. The rotor 
speed, the speed estimation error, and the u-phase current are  
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Fig. 19.  Experimental comparison of the speed estimation error 
at 150 r/min with step load disturbance from 0 to 100% rated 
torque. (a) EKF. (b) LS-STEKF.   

 
given from top to bottom. Fig. 19(a) shows the experimental 
results based on the EKF, and Fig. 19(b) shows the 
experimental results based on the LS-STEKF. It can be seen 
that the speed estimation error is obviously reduced based on 
the LS-STEKF during the entire operation with the step load 
disturbance, and that the maximum error of the speed 
estimation is reduced to 10 r/min from 35 r/min. Therefore, 
the LS-STEKF is effective for sensorless control and has 
better dynamic tracking performance than the EKF at low 
speeds with a step load. 

Fig. 18 and Fig. 19 indicate that the superiority of 
LS-STEKF is that it has better dynamic performance than the 
EKF with a step load disturbance. 

 

V. CONCLUSION 

In this paper, an adaptive speed estimation method based 
on the LS-STEKF for induction motors has been proposed. 
The correctness and effectiveness of the proposed method 
have been verified on an induction motor sensorless drive. 
Experimental results demonstrate that the LS-STEKF can 
effectively improve the model adaptability to actual systems 
and environmental variations. The maximum error of the 
speed estimation with disturbances and motor parameter 
mismatches is obviously reduced, and both the steady and 
transient performances are improved by using the proposed 
adaptive speed estimation method. 
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