• 제목/요약/키워드: least absolute shrinkage and selection operator(LASSO)

검색결과 39건 처리시간 0.023초

Weighted Least Absolute Deviation Lasso Estimator

  • Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • 제18권6호
    • /
    • pp.733-739
    • /
    • 2011
  • The linear absolute shrinkage and selection operator(Lasso) method improves the low prediction accuracy and poor interpretation of the ordinary least squares(OLS) estimate through the use of $L_1$ regularization on the regression coefficients. However, the Lasso is not robust to outliers, because the Lasso method minimizes the sum of squared residual errors. Even though the least absolute deviation(LAD) estimator is an alternative to the OLS estimate, it is sensitive to leverage points. We propose a robust Lasso estimator that is not sensitive to outliers, heavy-tailed errors or leverage points.

How to improve oil consumption forecast using google trends from online big data?: the structured regularization methods for large vector autoregressive model

  • Choi, Ji-Eun;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • 제29권1호
    • /
    • pp.41-51
    • /
    • 2022
  • We forecast the US oil consumption level taking advantage of google trends. The google trends are the search volumes of the specific search terms that people search on google. We focus on whether proper selection of google trend terms leads to an improvement in forecast performance for oil consumption. As the forecast models, we consider the least absolute shrinkage and selection operator (LASSO) regression and the structured regularization method for large vector autoregressive (VAR-L) model of Nicholson et al. (2017), which select automatically the google trend terms and the lags of the predictors. An out-of-sample forecast comparison reveals that reducing the high dimensional google trend data set to a low-dimensional data set by the LASSO and the VAR-L models produces better forecast performance for oil consumption compared to the frequently-used forecast models such as the autoregressive model, the autoregressive distributed lag model and the vector error correction model.

그래프 LASSO에서 모형선택기준의 비교 (Comparison of model selection criteria in graphical LASSO)

  • 안형석;박창이
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권4호
    • /
    • pp.881-891
    • /
    • 2014
  • 그래프모형(graphical model)은 확률 변수들간의 조건부 독립성(conditional independence)을 시각적인 네트워크형태로 표현할 수 있기 때문에, 정보학 (bioinformatics)이나 사회관계망 (social network) 등 수많은 변수들이 서로 연결되어 있는 복잡한 확률 시스템에 대한 직관적인 도구로 활용될 수 있다. 그래프 LASSO (graphical least absolute shrinkage and selection operator)는 고차원의 자료에 대한 가우스 그래프 모형 (Gaussian graphical model)의 추정에서 과대적합 (overfitting)을 방지하는데에 효과적인 것으로 알려진 방법이다. 본 논문에서는 그래프 LASSO 추정에서 매우 중요한 문제인 모형선택에 대하여 고려한다. 특히 여러가지 모형선택기준을 모의실험을 통해 비교하며 실제 금융 자료를 분석한다.

Penalized rank regression estimator with the smoothly clipped absolute deviation function

  • Park, Jong-Tae;Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • 제24권6호
    • /
    • pp.673-683
    • /
    • 2017
  • The least absolute shrinkage and selection operator (LASSO) has been a popular regression estimator with simultaneous variable selection. However, LASSO does not have the oracle property and its robust version is needed in the case of heavy-tailed errors or serious outliers. We propose a robust penalized regression estimator which provide a simultaneous variable selection and estimator. It is based on the rank regression and the non-convex penalty function, the smoothly clipped absolute deviation (SCAD) function which has the oracle property. The proposed method combines the robustness of the rank regression and the oracle property of the SCAD penalty. We develop an efficient algorithm to compute the proposed estimator that includes a SCAD estimate based on the local linear approximation and the tuning parameter of the penalty function. Our estimate can be obtained by the least absolute deviation method. We used an optimal tuning parameter based on the Bayesian information criterion and the cross validation method. Numerical simulation shows that the proposed estimator is robust and effective to analyze contaminated data.

Penalized variable selection for accelerated failure time models

  • Park, Eunyoung;Ha, Il Do
    • Communications for Statistical Applications and Methods
    • /
    • 제25권6호
    • /
    • pp.591-604
    • /
    • 2018
  • The accelerated failure time (AFT) model is a linear model under the log-transformation of survival time that has been introduced as a useful alternative to the proportional hazards (PH) model. In this paper we propose variable-selection procedures of fixed effects in a parametric AFT model using penalized likelihood approaches. We use three popular penalty functions, least absolute shrinkage and selection operator (LASSO), adaptive LASSO and smoothly clipped absolute deviation (SCAD). With these procedures we can select important variables and estimate the fixed effects at the same time. The performance of the proposed method is evaluated using simulation studies, including the investigation of impact of misspecifying the assumed distribution. The proposed method is illustrated with a primary biliary cirrhosis (PBC) data set.

다중선형회귀모형에서의 변수선택기법 평가 (Evaluating Variable Selection Techniques for Multivariate Linear Regression)

  • 류나현;김형석;강필성
    • 대한산업공학회지
    • /
    • 제42권5호
    • /
    • pp.314-326
    • /
    • 2016
  • The purpose of variable selection techniques is to select a subset of relevant variables for a particular learning algorithm in order to improve the accuracy of prediction model and improve the efficiency of the model. We conduct an empirical analysis to evaluate and compare seven well-known variable selection techniques for multiple linear regression model, which is one of the most commonly used regression model in practice. The variable selection techniques we apply are forward selection, backward elimination, stepwise selection, genetic algorithm (GA), ridge regression, lasso (Least Absolute Shrinkage and Selection Operator) and elastic net. Based on the experiment with 49 regression data sets, it is found that GA resulted in the lowest error rates while lasso most significantly reduces the number of variables. In terms of computational efficiency, forward/backward elimination and lasso requires less time than the other techniques.

MP-Lasso chart: a multi-level polar chart for visualizing group Lasso analysis of genomic data

  • Min Song;Minhyuk Lee;Taesung Park;Mira Park
    • Genomics & Informatics
    • /
    • 제20권4호
    • /
    • pp.48.1-48.7
    • /
    • 2022
  • Penalized regression has been widely used in genome-wide association studies for joint analyses to find genetic associations. Among penalized regression models, the least absolute shrinkage and selection operator (Lasso) method effectively removes some coefficients from the model by shrinking them to zero. To handle group structures, such as genes and pathways, several modified Lasso penalties have been proposed, including group Lasso and sparse group Lasso. Group Lasso ensures sparsity at the level of pre-defined groups, eliminating unimportant groups. Sparse group Lasso performs group selection as in group Lasso, but also performs individual selection as in Lasso. While these sparse methods are useful in high-dimensional genetic studies, interpreting the results with many groups and coefficients is not straightforward. Lasso's results are often expressed as trace plots of regression coefficients. However, few studies have explored the systematic visualization of group information. In this study, we propose a multi-level polar Lasso (MP-Lasso) chart, which can effectively represent the results from group Lasso and sparse group Lasso analyses. An R package to draw MP-Lasso charts was developed. Through a real-world genetic data application, we demonstrated that our MP-Lasso chart package effectively visualizes the results of Lasso, group Lasso, and sparse group Lasso.

Moderately clipped LASSO for the high-dimensional generalized linear model

  • Lee, Sangin;Ku, Boncho;Kown, Sunghoon
    • Communications for Statistical Applications and Methods
    • /
    • 제27권4호
    • /
    • pp.445-458
    • /
    • 2020
  • The least absolute shrinkage and selection operator (LASSO) is a popular method for a high-dimensional regression model. LASSO has high prediction accuracy; however, it also selects many irrelevant variables. In this paper, we consider the moderately clipped LASSO (MCL) for the high-dimensional generalized linear model which is a hybrid method of the LASSO and minimax concave penalty (MCP). The MCL preserves advantages of the LASSO and MCP since it shows high prediction accuracy and successfully selects relevant variables. We prove that the MCL achieves the oracle property under some regularity conditions, even when the number of parameters is larger than the sample size. An efficient algorithm is also provided. Various numerical studies confirm that the MCL can be a better alternative to other competitors.

A small review and further studies on the LASSO

  • Kwon, Sunghoon;Han, Sangmi;Lee, Sangin
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권5호
    • /
    • pp.1077-1088
    • /
    • 2013
  • High-dimensional data analysis arises from almost all scientific areas, evolving with development of computing skills, and has encouraged penalized estimations that play important roles in statistical learning. For the past years, various penalized estimations have been developed, and the least absolute shrinkage and selection operator (LASSO) proposed by Tibshirani (1996) has shown outstanding ability, earning the first place on the development of penalized estimation. In this paper, we first introduce a number of recent advances in high-dimensional data analysis using the LASSO. The topics include various statistical problems such as variable selection and grouped or structured variable selection under sparse high-dimensional linear regression models. Several unsupervised learning methods including inverse covariance matrix estimation are presented. In addition, we address further studies on new applications which may establish a guideline on how to use the LASSO for statistical challenges of high-dimensional data analysis.

High-dimensional linear discriminant analysis with moderately clipped LASSO

  • Chang, Jaeho;Moon, Haeseong;Kwon, Sunghoon
    • Communications for Statistical Applications and Methods
    • /
    • 제28권1호
    • /
    • pp.21-37
    • /
    • 2021
  • There is a direct connection between linear discriminant analysis (LDA) and linear regression since the direction vector of the LDA can be obtained by the least square estimation. The connection motivates the penalized LDA when the model is high-dimensional where the number of predictive variables is larger than the sample size. In this paper, we study the penalized LDA for a class of penalties, called the moderately clipped LASSO (MCL), which interpolates between the least absolute shrinkage and selection operator (LASSO) and minimax concave penalty. We prove that the MCL penalized LDA correctly identifies the sparsity of the Bayes direction vector with probability tending to one, which is supported by better finite sample performance than LASSO based on concrete numerical studies.