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Abstract

High-dimensional data analysis arises from almost all scientific areas, evolving with
development of computing skills, and has encouraged penalized estimations that play
important roles in statistical learning. For the past years, various penalized estimations
have been developed, and the least absolute shrinkage and selection operator (LASSO)
proposed by Tibshirani (1996) has shown outstanding ability, earning the first place on
the development of penalized estimation. In this paper, we first introduce a number of
recent advances in high-dimensional data analysis using the LASSO. The topics include
various statistical problems such as variable selection and grouped or structured variable
selection under sparse high-dimensional linear regression models. Several unsupervised
learning methods including inverse covariance matrix estimation are presented. In ad-
dition, we address further studies on new applications which may establish a guideline
on how to use the LASSO for statistical challenges of high-dimensional data analysis.

Keywords: High dimension, LASSO, penalized estimation, review.

1. Introduction

Consider a risk function R(θ) = EL(z,θ) with respect to θ, where θ ∈ Rp is a p-
dimensional parameter vector of interest and L(z,θ) is a loss function of a random vector z
and parameter θ. Given n independent copies, zi, i ≤ n, of z, penalized estimation minimizes
the penalized empirical risk function,

Qλ(θ) =
∑n
i=1 L(zi,θ)/n+

∑p
j=1 J

λ(|θj |),

for a penalty function Jλ that is often indexed by a tuning parameter (vector) λ > 0. The

penalized estimator θ̂
λ

is the global minimizer of Qλ, that is,

θ̂
λ

= arg minθ Q
λ(θ).
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If the penalty function is convex then θ̂
λ

is unique. Examples are the least absolute shrink-
age and selection operator (LASSO) penalty Jλ(t) = λ|t| (Tibshirani, 1996) and the ridge
penalty Jλ(t) = λt2. However, if the penalty function is concave then there may be many
local minimizers and the global minimizer itself is not unique. Examples are the smoothly
clipped absolute deviation (SCAD) penalty dJλ(|t|)/d|t| = min{λ, (aλ−|t|)+/(a+1)}, a > 2
(Fan and Li, 2001), the bridge penalty Jλ(|t|) = λ|t|γ , 0 < γ ≤ 1 (Huang et al., 2008a) and
the minimax concave (MC) penalty dJλ(|t|)/d|t| = (λ− |t|/a)+, a > 1 (Zhang, 2010). Here,
x+ = xI(x ≥ 0). The penalty functions above have their own characteristics in parameter
estimation and model selection, and often we need to choose an appropriate penalty function
carefully, that can carry out the goal of data analysis well.

In general, penalized estimation is known to give high prediction accuracy from the shrink-
age effect on the non-zero elements of the estimator, and increases interpretability since the
fitted model is sparse enough (Tibshirani, 1996). However, the most important property
of the penalized estimation is that we can apply the penalized estimation even when the
model is high-dimensional, where the dimension of the parameter of interest is much larger
than the sample size, that is, p > n. For example, detecting important genes in gene ex-
pression data often requires high-dimensional models since they include thousands of genes
as independent variables (Alon et al., 1999; Dudoit et al., 2002; Lee and Lee, 2012). Most
classical estimations unfortunately have limitations for high-dimensional situations since the
estimators are not identifiable in general and sometimes cannot be constructed numerically.

In this paper, we first give a small review of existing studies on the penalized estimation.
For convenience, we will focus on the LASSO since, among penalties, the LASSO has shown
outstanding ability, earning the first place on the development of penalized estimation.
Although the LASSO suffers from a certain theoretical disadvantage (Zou, 2006; Zhao and
Yu, 2006; Leng et al., 2006; Meinshausen and Yu, 2009), it is relatively easy to implement
the penalized estimator numerically, since the optimization problem is convex (Efron et al.,
2004; Friedman et al., 2007; Rosset and Zhu, 2007; Park and Hastie, 2007). Second, we give
new challenging topics on high-dimensional data analysis. Given current research direction of
penalized estimation, various areas still remain to be applied and studied with the LASSO.
For example, unsupervised grouping method is one of interesting problems but requires new
idea of application.

The rest of the paper is organized as follows. Section 2 presents a survey of existing results
on the LASSO and Section 3 follows introducing some new topics on the use of the LASSO.
Some concluding remarks are in Section 4.

2. A review on the LASSO and its applications

2.1. Variable selection

Consider a sparse linear regression model,

y = Xβ∗ + ε, (2.1)

where y = (y1, . . . , yn)T ∈ Rn is a response vector, β∗ = (β∗1 , . . . , β
∗
p)T is a sparse true regres-

sion coefficient vector, X = (X1, . . . ,Xp) is an n× p design matrix and ε = (ε1, . . . , εn)T ∈
Rn is a random error vector. Here, the sparsity of the model implies that there exists a
non-empty subset N ∗ = {j : β∗j = 0} 6= ∅. Hence the model includes one or more noisy
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predictive variables which requires identifying the correct index set A∗ = {j : β∗j 6= 0}. In

this case, we can use the LASSO penalty Jλ(|t|) = λ|t| for estimating β∗:

β̂
λ

= arg minβ
{
‖y −Xβ‖22/2n+ λ‖β‖1

}
,

for some λ > 0. Since the LASSO penalty is non-differentiable at the origin, the estimator

β̂
λ

of β∗ must have sparsity (Fan and Li, 2001; Donoho and Johnstone, 1994) yielding a non-

empty subset Âλ = {j : β̂λj 6= 0} indexed by λ. Hence we can use Âλ as an estimator of A∗ =
{j : β∗j 6= 0}, which implies we can do parameter estimation and variable (model) selection
simultaneously (Tibshirani, 1996). This, in fact, shows a nice statistical implementation since
we may not use known model comparison measures such as Akaike or Beysian information
criteria (Akaike, 1973; Schwarz, 1978), together with stepwise variable selection methods
such as forward selection and backward elimination, which shows far more unstable results
on model selection (Breiman, 1996).

Statistical properties of the LASSO have been studied by many authors. Zhao and Yu
(2006) and Meinshausen and Yu (2009) proved that the LASSO requires a certain condi-
tion to select the correct set of nonzero true coefficients, provided that these coefficients
are bounded away from zero at a certain rate. Hence, the LASSO does not have selection
consistency in general which agrees with the results of Leng et al. (2006) and Zou (2006).
Zhang and Huang (2008) proved that the LASSO selects a model whose size, the number
of predictive variables in the model, is O(q) at most, where q = ‖β∗‖0 is the number of
nonzero true coefficients, and includes all coefficients of greater order than the bias of the
selected model, achieving (log p/n)1/2-consistency under a sparse Riesz and weak sparsity
conditions.

In general, the LASSO selects more predictive variables than the number of true variables
due to the shrinkage effect but achieves an optimality in minimax sense, producing high
prediction accuracy. See, Raskutti et al. (2011), Bickel et al. (2009) and Zhang (2009) for
some sharp minimax rates of the LASSO in high-dimensional models. These results hold
similarly through other methods below, and hence we skip theoretical properties of the
LASSO when we introduce methodologies. We refer to Zhang and Zhang (2012) for a well
organized review of penalized estimation including the LASSO for variable selection in high-
dimensional linear regression models.

2.2. Adaptive variable selection

One main deficiency of the LASSO is to conflict between correct variable selection and
optimal prediction (Leng et al., 2006) since the order of tuning parameter λ varies in each
purpose. To overcome this problem, Zou (2006) proposed the adaptive LASSO:

β̂
λ

= arg minβ
{
‖y −Xβ‖22/2n+ λ

∑p
j=1wj |βj |

}
,

for some λ > 0, where w = (w1, . . . , wp)
T is a weight vector obtained through samples.

By using a data-dependent weight vector w, the adaptive LASSO can achieve the oracle
property (Fan and Li, 2001; Fan and Peng, 2004; Zou and Zhang, 2009); asymptotic equiva-
lence between a penalized estimator and the oracle least square estimator obtained by true
predictive variables only.
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The key issue in using the adaptive LASSO is how to obtain the weight vector w. For
example, Zou (2006) used the inverse of absolute value of the ordinary least square estimator
to construct w when p < n. Huang et al. (2008b) proved that marginal linear regression can
be used to obtain a weight vector under partial orthogonality conditions even when p > n,
and Zhou et al. (2009) suggested to use the two-stage adaptive Lasso for consistent model
selection in linear and Gaussian graphical models under the restricted eigenvalue conditions
(Bickel et al., 2009).

Although there are many non-convex penalties such as the SCAD and MC that have
statistical advantages in selection consistency, they suffer from bad local minimizers and it
is much hard to identify the theoretical optimal penalized estimators among them (Kim and
Kwon, 2012; Zhang and Zhang, 2012; Zhang, 2010). Hence the adaptive LASSO is a useful
practical alternative in variable selection since the problem is convex that is easy to solve
and the solution is unique having the oracle property.

2.3. Grouped variable selection

Assume that there is a known group structure among predictive variables so that it might
be possible to derive an advantage from the group information by selecting groups, and
sometimes, selecting both groups and variables simultaneously. In this case, the sparse linear
regression model in (2.1) can be rewritten as

y = Xβ∗ + ε =
∑K
k=1 Xkβ

∗
k + ε, (2.2)

where Xk is n×pk design matrix of the kth group, β∗k = (β∗k1, . . . , β
∗
kpk

)T is a corresponding
true regression coefficient vector and K is the number of groups in the model. The model
includes an example where a linear regression model is extended to include groups of dummy
variables of categorical predictive variables. In this case, selecting groups of dummy variables
is interesting and often gives higher prediction accuracy than selecting variables without
using the group structure. Further, if possible, simultaneous selecting both groups of dummy
variables and dummy variables in selected groups is also challenging.

For the problem, Yuan and Lin (2006) proposed the group LASSO:

β̂
λ

= arg minβ
{
‖y −

∑K
k=1 Xkβk‖22/2n+

∑K
k=1 λk‖βk‖2

}
, (2.3)

for some λ = (λ1, . . . , λK)T , λk > 0, k ≤ K, which is equivalent to the LASSO when each
group consists of just one predictive variable. From the L2-norm inside the penalty, the
group LASSO selects groups and all the variables in selected groups are included in the
fitted model, which implies the group LASSO does group selection and parameter estimation
simultaneously.

In fact, the criterion in (2.3) can be a special case of the inner-outer composite criterion
introduced by Huang et al. (2012):

β̂
λ

= arg minβ
{
‖y −

∑K
k=1 Xkβk‖22/2n+

∑K
k=1 J

O
λk

(∑pk
j=1 J

I
γ (|βkj |)

)}
,

for some λ = (λ1, . . . , λK , γ)T , λk > 0, k ≤ K, γ > 0, where JOλk
is the kth outer penalty for

group selection and JIγ is the inner penalty for variable selection. The group LASSO uses

the bridge penalty (Huang et al., 2008a), JOλk
(|t|) = λp1−νk |t|ν with ν = 1/2, as the outer
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penalty, and the ridge penalty JIγ (t) = γ|t|2 as the inner penalty, where the inner tuning
parameter is fixed with γ = 1.

As we mentioned above, the group LASSO cannot select variables within the selected
groups while selecting groups. To improve the group LASSO, Friedman et al. (2010) proposed
the sparse group LASSO:

β̂
λ

= arg minβ
{
‖y −

∑K
k=1 Xkβk‖22 +

∑K
k=1 J

G
λk

(‖βk‖2) +
∑K
k=1

∑pk
j=1 J

V
γ (|βkj |)

}
,

for some λ = (λ1, . . . , λK , γ)T , λk > 0, k ≤ K, γ > 0, where JGλk
is penalty for group

selection and JVγ for variable selection. By adding the LASSO penalty, JVγ (t) = γ|t|, to the
group LASSO penalty, the sparse group LASSO gives a clearer way of controlling variable
and group selection, although there are two different tuning parameters that cause higher
computational cost. We refer to Huang et al. (2012) for a nice review of penalized estimations
for group and variable selection in high-dimensional linear regression models.

2.4. Structured variable selection

The group LASSO controls L1-norms of coefficient vectors when there is a known group
structure as (2.2). However it is often more challenging to find an unknown group structure
itself in the model (2.1). For example, Tibshirani et al. (2005) proposed the fused LASSO:

β̂
λ

= arg minβ
{
‖y −Xβ‖22/2n+ λ1‖β‖1 + λ2

∑p
j=2 |βj − βj−1|

}
, (2.4)

for some λ = (λ1, λ2)T , λ1 > 0, λ2 > 0. The special form of the penalty produces a succes-
sive group structure of estimators, achieving variable selection. Since the LASSO penalty
imposed on both parameters and their successive differences, the fused LASSO constructs a
group structure keeping the order of variables. Note that the idea of the fused LASSO can
be generalized by considering a network structure E , where (s, t) ∈ E denotes possible con-
nectivity between variables Xs and Xt. In this case, the penalized estimator can be obtained
with the second penalty λ2

∑
(s,t)∈E |βs − βt|, and we can construct a sparse (sub)network

structure E ′ ⊂ E since connectivity is considered over the network structure E only. Note
that in this example, we consider variables as a group if they have the same coefficients in
the fitted model.

The fused LASSO was generalized by Tibshirani and Taylor (2011):

β̂
λ

= arg minβ
{
‖y −Xβ‖22/2n+

∑K
k=1 λk‖D(k)β‖1

}
,

for some λ = (λ1, . . . , λK)T , λk > 0, k ≤ K, where D(k) is a mk×p specified structure matrix
for the kth penalty that depends on applications or geometric behaviors of β, and K is the
number of structures we want to specify. For example, the fused LASSO corresponds to a

choice of K = 2, where D(1) = I with m = p and D(2) whose elements satisfy D
(2)
jj = −1,

D
(2)
j(j+1) = 1 and D

(2)
jk = 0, k 6= j, j + 1 with m = p − 1. Another example is the linear

and polynomial trend filtering when K = 1 and D(1) satisfies D
(1)
jj = −1, D

(1)
j(j+1) = 2,

D
(1)
j(j+2) = −1 and D

(1)
jk = 0, k 6= j, j + 1, j + 2 with m = p − 2. In this case, the penalty

becomes λ‖D(1)β‖1 = λ
∑p−1
j=2 |2βj − (βj−1 − βj+1)|.
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In linear regression models, sometimes, we need to fix a certain heredity structure. For
example, an interaction term can be included in the model only if the corresponding main
terms are also included in the model, which often referred as strong heredity. For this issue,
Choi et al. (2010b) proposed to use the strong heredity interaction model:

(β̂
λ
, η̂λ) = arg minβ,η

{
‖y −Xβ −Vη‖22/2n+ λ1‖β‖1 + λ2‖η‖1

}
,

for some λ = (λ1, λ2)T , λ1 > 0, λ2 > 0, where V = (V12,V13, . . . ,V(p−1)p) and η =
(η12, . . . , η(p−1)p)

T are the design matrix and parameter vector for interactions, respectively.
In the model, they reparameterize the parameter vector β as ηjk = δjkβjβk, j < k, so that

the estimator keeps the strong heredity constraint automatically. That is, whenever β̂λj = 0

or β̂λk = 0, η̂λjk = 0, and vice versa, η̂λjk 6= 0 if both β̂λj 6= 0 and β̂λk 6= 0.

2.5. Inverse covariance and partial correlation matrix estimation

Let Z = (Z1, . . . ,Zp) = (z1, . . . , zn)T , where z1, . . . , zn are n independent copies of z =
(z1, . . . , zp)

T ∼ N(0,Σ) for some p × p covariance matrix Σ � 0. Here, Σ � 0 denotes Σ

is positive definite. When p > n, the sample covariance matrix Σ̂ = ZTZ/n does not have
an inverse matrix. Hence, if we are interested in estimating the inverse covariance matrix
(concentration or precision matrix), Ω = Σ−1, we need to find another estimator instead

of inverting Σ̂ = ZTZ/n. For the problem, the penalized estimator Ω̂
λ

has been studied by
many authors (Yuan, 2008; Yuan, 2010; Banerjee et al., 2008; Friedman et al., 2008):

Ω̂
λ

= arg minΩ�0
(

log |Ω|+ trace(ΩΣ̂) + λ
∑
j 6=k |Ωjk|

)
,

for some λ > 0, where |Ω| is determinant of Ω. The estimator Ω̂
λ

is positive definite and
execute model selection and estimation simultaneously as the LASSO. Banerjee et al. (2008)
shows that the problem is equivalent to

maxΩ�0 min‖U‖∞≤λ
(

log |Ω| − trace(Σ̂Ω + UΩ)
)
,

for some λ > 0, where ‖U‖∞ = maxjk |Ujk|. This equivalence leads to an efficient optimiza-
tion algorithm called the graphical LASSO developed by Friedman et al. (2008).

Under normality assumption, nonzero elements of the inverse covariance matrix Ω im-
ply conditional dependency between corresponding variable pairs conditional on the other
variables (Edward, 2000). Let Θ be the partial correlation matrix whose (j, k) entry Θjk

is the partial correlation between xj and xk, j 6= k, given the others, that is, Θjk =
Corr(zj , zk|zl, l 6= j, k). It is well known that Θjk = −Ωjk/

√
ΩjjΩkk and the linear re-

gression model zk =
∑
j 6=k ζkjzj + εk satisfies ζkj = −Ωkj/Ωkk = Θkj

√
Ωjj/Ωkk. Hence, we

can identify nonzero elements of partial correlation matrix by estimating ζ = (ζT1 , . . . , ζ
T
p )T ,

where ζk = (ζk1, . . . , ζkp)
T and ζkk = −1, using the penalized estimator (Meinshausen and

Bülmann, 2006),

ζ̂
λ

= arg minζ ,
∑p
k=1

(
‖Zk −

∑
j 6=k ζkjZj‖22 + λ

∑
j 6=k |ζkj |

)
, (2.5)

for some λ > 0, subject to ζkk = −1, k ≤ p.
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The estimator ζ̂
λ

enables us to construct a kind of network structure among variables, and

then we can find the estimator Θ̂
λ

of Θ by using the estimated network structure. However,
it is of interest also to directly estimate partial correlation itself as in Peng et al. (2009):

(ζ̂
λ
, ω̂λ) = arg minζ,w

∑p
k=1

(
‖Zk −

∑
j 6=k ζkj

√
ωjj/ωkkZj‖22 + λ

∑
j 6=k |ζkj |

)
,

for some λ > 0, subject to ζkk = −1, k ≤ p. We refer to Pourahmadi (2011) for a survey
of the progress made in modeling covariance matrices from the perspectives of generalized
linear models for high-dimensional data.

2.6. Sparse principal component and factor analysis

The penalized estimation can be applied to principal component analysis (PCA) and factor
analysis (FA). In real applications, the sparse loadings greatly help us to interpret the results
from the PCA and FA especially when the dimension is much larger than the sample size.

For example, Zou et al. (2006) introduced the sparse PCA, using a regression type refor-
mulation of the optimization problem of PCA. Given k, they modified the first k principal
components to have sparse loadings by applying the LASSO penalty in the estimation. Let
Φ = (φ1, . . . ,φk) and Ψ = (ψ1, . . . ,ψk) be n× p matrices. The sparse loadings for the first
k principal components can be obtained by optimizing the following problem:

(Φ̂
λ
, Ψ̂

λ
) = arg minΦ,Ψ

∑n
i=1 ‖zi −ΦΨT zi‖22 + λ1

∑k
j=1 ‖ψj‖22 + λ2

∑k
j=1 ‖ψj‖1,

for some λ = (λ1, λ2)T , λ1 > 0, λ2 > 0, subject to ΦTΦ = Ik×k. Given Φ, the problem

becomes k independent elastic net problems (Zou and Hastie, 2005) of finding ψ̂
λ

j , j ≤ k,

whose elements are allowed to be exactly zero, and given Ψ, we can find exact solution Φ̂
λ

by the singular value decomposition. See next section for another example of sparse PCA,
which is more intuitive to understand.

Another example for FA was proposed by Choi et al. (2010a). Let Z = LF + E, where
L is the n × q unobserved factor matrix, F is the q × p factor loading matrix and E is the
n × p random error matrix with mean zero and diagonal covariance matrix Σ. To obtain
sparse factor loadings, they maximizes penalized maximum likelihood under the normality
assumption:

(Σ̂
λ
, F̂λ) = arg maxΣ,F

(
log |(Σ2 + FTF)|+ trace(ZTZ/n)(Σ2 + FTF)−1) + λ‖F‖1

)
,

for some λ > 0, where ‖F‖1 =
∑
ij |Fij |. They also developed the generalized expectation-

maximization algorithm for obtaining the penalized estimator, which solves the LASSO
penalized least squares iteratively. We refer to Zou et al. (2006) and Choi et al. (2010a) for
more details of sparse PCA and FA, respectively.

3. New applications to recent topics

In this section, we introduce some possible applications of the LASSO to recent topics of
machine learning research. Most examples are one of penalized estimations which may es-
tablish simple guidelines how to use the LASSO for statistical challenges of high-dimensional
data analysis.
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3.1. Unsupervised method of grouping variables

Grouping variables give a disjoint network structure. As we see above, the fused LASSO
recovers a successive linkage of predictive variables keeping their orders in the linear regres-
sion model in (2.1). That is, the k predictive variables, Xj ,Xj+1, . . . ,Xj+k−2 and Xj+k−1
form a local group in the sense that β̂λj = · · · = β̂λj+k−1 6= β̂λs for all s < j and s ≥ j+k. The
estimated network structure from the fused LASSO has an interpretation; if some elements
of the fused LASSO are all the same then their effects on the target vector y are equivalent
to each other, so that we can consider the corresponding predictive variables as local network
members.

However, if the problem is not supervised, that is, if there is no target variable, then the
problem is not trivial. One possible approach may be sparse partial correlation estimation
in (2.5). Since some elements of the partial correlation matrix estimator are exactly zero, we
can construct a network structure based on the non-zero elements of the estimator. However,
there is no guarantee that the estimated network structure is disjoint, and hence this is not
a method of grouping variables as the fused LASSO in (2.4). To the author’s knowledge,
this problem has not been studied yet, and is an open problem. We will discuss in the
end of this subsection what statistical application can be addressed from this problem in
high-dimensional data analysis.

Before proceeding, we introduce another penalized estimation for sparse PCA proposed
by Jolliffe et al. (2003). Assume that we have n × p sample matrix Z = (Z1, . . . ,Zp). The
p sparse principal components cj , j ≤ p can be constructed as linear combinations of p
variables Zj , j ≤ p:

cj = Zα̂λj =
∑p
k=1 Zjα̂

λ
jk,

where α̂λj successively maximizes the variance

αTj ZTZαj = ‖Zαj‖22,

for some λ > 0, subject to αTj αj = 1, αThαj = 0, h < j and ‖αj‖1 ≤ λ. It is easy to see

that the penalized estimator α̂λj is sparse so that the principal component becomes to have

sparse representation: ĉλj =
∑p
k=1 α̂

λ
jkZjI(α̂λjk 6= 0). As the authors pointed out, the sparse

PCA effectively ignores any small coefficients as zero, so that the interpretation becomes
easier.

Using the idea of sparse PCA, we introduce a new idea of penalized estimation for grouping
variables. We consider the following successive penalized estimation of maximizing

αTj ZTZαj = ‖Zαj‖22, j ≤ p,

for some λj > 0, subject to αTj αj = 1, ‖αj‖1 ≤ λj and
(
∪h<j supp(αh)

)
∩ supp(αj) = ∅,

where supp(αj) = {k : αjk 6= 0}. Given j ≤ p, the optimization problem is quite easy
to solve since it is a L1-constrained problem with one equality L2-constraint. After some
iterations, we can find a q < p such that supp(αj) = ∅ for all j > q. Further, all the
principal components must be represented as linear combinations of disjoint set of variables,
which implies the variables are grouped. Note that the proposed method fails to have the
orthogonality of the original PCA since cTj ck 6= 0 in general and so does the sparse PCA.
Hence, to investigate the properties of the principal components from the proposed method
is also of interest, which can be a future study.
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Before going to next subsection, we give a nice statistical application of the proposed
method. Since the estimated group structures are disjoint, we can estimate the covariance

matrix Σ of samples by a block diagonal matrix Σ̂
λ
. The diagonal matrices of Σ̂

λ
are simply

groupwise sample covariance matrices: ZTAk
ZAk

/|Ak| for k ≤ q, where Ak is the index set
of variables in the kth principal component ck, |Ak| is the cardinality of Ak and ZAk

is the
submatrix of Z that consists of the variables in Ak.

3.2. High dimensional clustering

Assume that we have n samples zi ∈ Rp, i ≤ n, and we want to construct K-clusters,
Sk, k ≤ K, that satisfy the followings: Sk ⊂ S, k ≤ K, where S = {z1, . . . , zn}, Sk ∩ Sj =
∅, k 6= j ≤ K and ∪Kk=1Sk = S. For example, the K-means clustering method constructs K
clusters Sk, k ≤ K, by minimizing

L(S1, . . . ,SK) =
∑K
k=1

∑
zi∈Sk ‖zi − µ̂k‖

2
2,

with respect to Sk, k ≤ K, where

µ̂k = arg minµk

∑
zi∈Sk ‖zi − µk‖

2
2 =

∑n
i=1 ziI(zi ∈ Sk)/|Sk|.

Note that the K-means clustering method depends on the distances between samples even
when p is far lager than n. Considering the high-dimensional situation, we can expect that
some of variables does not highly affect the cluster structure, that is, there are noisy variables
in the samples. In this case, it is hard to have a desirable clustering results unless we identify
useless variables while clustering.

For this issue, we propose penalized K-means clustering method that improves the original
K-means clustering method by using L1-constraint. Given λk > 0, k ≤ K, consider the
problem of minimizing

L(S1, . . . ,SK) =
∑K
k=1

∑
zi∈Sk(zi − µ̂λk

k )Tdiag(ω̂λk

k )(zi − µ̂λk

k ),

with respect to Sk, k ≤ K, where

(µ̂λk

k , ω̂λk

k ) = arg minµk,ωk

∑
zi∈Sk(zi − µk)Tdiag(ωk)(zi − µk). (3.1)

subject to ‖ωk‖1 = λk and ωkj ≥ 0 for all k ≤ K and j ≤ p. Note that the optimization
problem in (3.1) is a linear equality constrained linear optimization problem which is easy
to solve. Further, by the linear equality constraint, the solution ω̂λk

k must be sparse yielding

sparse µ̂λk

k . This shows the key idea of the proposed method that we can ignore the marginal

distances by using the sparsity of ω̂λk

k . As the K-means clustering algorithm, the proposed

method may depend on the initial choice of µ̂λk

k , and require a proof of convergence which
is a future study.

4. Concluding remarks

In this paper, we briefly range over a number of recent advances of the LASSO in high-
dimensional data analysis such as variable selection in sparse linear regression models. These
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methods have been extended to various statistical models such as generalized linear models
(Fan and Peng, 2004; Kwon and Kim, 2011; Kim et al., 2011) and survival analysis (Fan
and Li, 2002; Hwang et al., 2011). However, we skip some details on other important topics
such as tuning parameter selection and optimization algorithm.

As statistical applications become increasingly sophisticated and progressive, developing
efficient algorithms plays a key role in the processes. Definitely, algorithms have been evolving
rapidly for the past years. However, it is still insufficient to handle various high-dimensional
statistical applications. Further, it is much hard to ensure global competitiveness without
achieving computational efficiency, considering high-dimension models and huge number of
samples. We refer to Tibshirani (1996), Efron et al. (2004), Rosset and Zhu (2007) Friedman
et al. (2007), Yuan and Lin (2006), Friedman et al. (2008), Tibshirani et al. (2005) and
Tibshirani and Taylor (2011) as examples.

Another critical issue is probably how to choose tuning parameters that are optimal in a
certain sense. A conventional way of choosing is the training, validating and testing procedure
(Hastie et al., 2001), but sometimes the K-fold cross validation method is preferred, when
a sample size is small. However, the model that minimizes the K-fold cross validation error
must overfit as shown by Wang et al. (2007). Hence, if the objective of data analysis is
to identify the true model, the cross validation is not a good choice and the increasing
computational cost must be concerned also.

As alternatives, consistent tuning parameter selection methods have been studied. Typical
examples are information criteria proposed by Wang et al. (2009), Wang et al. (2007), Wang
and Zhu (2011), Hirose et al. (2012) and Fan and Tang (2012). All these methods are one of
slight modifications of generalized information criterion proposed by Shao (1997) to apply
the common idea to penalized estimations; they are different only in orders (depending only
on model size p and sample size n) of weights of the degrees of freedom.

However, as studied by Kim et al. (2012), there are quite large number of consistent model
selection criteria indexed by the weight in each criterion. The weight must depend on not
only n and p but also many unknown things such as model sparsity, minimal signal strength
and error variance. Hence, it is quite hard to choose an optimal criterion among them case
by case which is a reason why various forms of weights as above exist. Hence, to authors’
knowledge, an adaptive selection criterion such as Ye (1998) and Shen and Ye (2002) is much
worth studying that can cover various situations in a uniform way, which is a nice further
study.
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