• Title/Summary/Keyword: learning journal

Search Result 29,081, Processing Time 0.061 seconds

A Deconstructive Understanding the Concept of Haewon in Daesoon Truth: From the Perspective of Derrida's Deconstruction Theory (대순진리의 해원(解冤)사상에 대한 해체(解體)론적 이해 -자크 데리다(Jacques Derrida)의 해체론을 중심으로-)

  • Kim, Dae-hyeon
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.39
    • /
    • pp.69-97
    • /
    • 2021
  • 'Déconstruction' is a system of thought that induces the emergent property that characterizes contemporary philosophy. The tradition of ancient Greek philosophy evolved over and over again, giving rise to the Renaissance and Enlightenment. It seemed to have reached its end under the historical perspective of modernity. However, contemporary philosophy wanted to see more possibilities through the deconstruction of modern philosophy. If modern philosophy dreams of a strange cohabitation between God and man with the humanistic completion of Plato's philosophy, modern philosophy rejects even that through deconstruction. Although Plato's classical metaphysics is a stable system centered around the absolute, it is ultimately based on God and religion. Under that system, human autonomy is only the autonomy bestowed by God. Contemporary philosophy is one of the results of efforts that try to begin philosophy from the original human voice through deconstruction. Instead of epistemology dependent on metaphysics, they wanted to establish epistemology from human existence and realize the best good that would set humans free through deconstruction. As such, it is no mistake to say that deconstruction is also an extension of the modern topic of human freedom. Deconstruction and human freedom act as one body in that the two cannot be separated from each other. Oddly enough, Daesoon Thought, which seems to have religious faith and traditional conservatism as main characteristics, has an emergent property that encompasses modern and contemporary times. The period of Korea, when Kang Jeungsan was active and founded Daesoon Thought, has an important meaning for those who have a keen view of history. Such individuals likely think that they have found a valuable treasure. This is because that period was a time when ideological activities were conducted due to an intense desire to discover the meaning of human freedom and envision a new world without copying the ways of the West. Instead they looked to face internal problems and raise people's awareness through subjectivity. In other words, the subtle ideas created by Korea's self-sustaining liberalism often take the form of what is commonly called new religions in modern times. Among these new religions, Daesoon Thought, as a Chamdonghak (true Eastern Learning), aims to spread a particular modern value beyond modern times through the concept of Haewon (the resolution of grievances) that was proclaimed by Jeungsan. The Haewon espoused in Daesoon Thought is in line with the disbandment of modern philosophy in that it contains modernity beyond modern times. First, Haewon means to resolve the fundamental resentment of human existence, which arose from Danju's grievance. Secondly, Haewon in Daesoon Thought encompasses the Haewon of the Three Realms of Heaven, Earth, and Humanity centers on a Haewon-esque style of existence called Injon (Human Nobility). Haewon in Daesoon Thought can be understood in the same context as Derrida's philosophy of Deconstruction. Modern deconstruction attempts to expose the invisible structures and bonds within human society and attempt to destroy them. In a similar way, Haewon endeavors to resolve the conflicts among the Three Realms by releasing the bonds of fundamental oppression that hinder the Three Realms of Heaven, Earth, and Humanity.

Abnormal Water Temperature Prediction Model Near the Korean Peninsula Using LSTM (LSTM을 이용한 한반도 근해 이상수온 예측모델)

  • Choi, Hey Min;Kim, Min-Kyu;Yang, Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.265-282
    • /
    • 2022
  • Sea surface temperature (SST) is a factor that greatly influences ocean circulation and ecosystems in the Earth system. As global warming causes changes in the SST near the Korean Peninsula, abnormal water temperature phenomena (high water temperature, low water temperature) occurs, causing continuous damage to the marine ecosystem and the fishery industry. Therefore, this study proposes a methodology to predict the SST near the Korean Peninsula and prevent damage by predicting abnormal water temperature phenomena. The study area was set near the Korean Peninsula, and ERA5 data from the European Center for Medium-Range Weather Forecasts (ECMWF) was used to utilize SST data at the same time period. As a research method, Long Short-Term Memory (LSTM) algorithm specialized for time series data prediction among deep learning models was used in consideration of the time series characteristics of SST data. The prediction model predicts the SST near the Korean Peninsula after 1- to 7-days and predicts the high water temperature or low water temperature phenomenon. To evaluate the accuracy of SST prediction, Coefficient of determination (R2), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE) indicators were used. The summer (JAS) 1-day prediction result of the prediction model, R2=0.996, RMSE=0.119℃, MAPE=0.352% and the winter (JFM) 1-day prediction result is R2=0.999, RMSE=0.063℃, MAPE=0.646%. Using the predicted SST, the accuracy of abnormal sea surface temperature prediction was evaluated with an F1 Score (F1 Score=0.98 for high water temperature prediction in summer (2021/08/05), F1 Score=1.0 for low water temperature prediction in winter (2021/02/19)). As the prediction period increased, the prediction model showed a tendency to underestimate the SST, which also reduced the accuracy of the abnormal water temperature prediction. Therefore, it is judged that it is necessary to analyze the cause of underestimation of the predictive model in the future and study to improve the prediction accuracy.

The development of resources for the application of 2020 Dietary Reference Intakes for Koreans (2020 한국인 영양소 섭취기준 활용 자료 개발)

  • Hwang, Ji-Yun;Kim, Yangha;Lee, Haeng Shin;Park, EunJu;Kim, Jeongseon;Shin, Sangah;Kim, Ki Nam;Bae, Yun Jung;Kim, Kirang;Woo, Taejung;Yoon, Mi Ock;Lee, Myoungsook
    • Journal of Nutrition and Health
    • /
    • v.55 no.1
    • /
    • pp.21-35
    • /
    • 2022
  • The recommended meal composition allows the general people to organize meals using the number of intakes of foods from each of six food groups (grains, meat·fish·eggs·beans, vegetables, fruits, milk·dairy products and oils·sugars) to meet Dietary Reference Intakes for Koreans (KDRIs) without calculating complex nutritional values. Through an integrated analysis of data from the 6th to 7th Korean National Health and Nutrition Examination Surveys (2013-2018), representative foods for each food group were selected, and the amounts of representative foods per person were derived based on energy. Based on the EER by age and gender from the KDRIs, a total of 12 kinds of diets were suggested by differentiating meal compositions by age (aged 1-2, 3-5, 6-11, 12-18, 19-64, 65-74 and ≥ 75 years) and gender. The 2020 Food Balance Wheel included the 6th food group of oils and sugars to raise public awareness and avoid confusion in the practical utilization of the model by industries or individuals in reducing the consistent increasing intakes of oils and sugars. To promote the everyday use of the Food Balance Wheel and recommended meal compositions among the general public, the poster of the Food Balance Wheel was created in five languages (Korean, English, Japanese, Vietnamese and Chinese) along with card news. A survey was conducted to provide a basis for categorizing nutritional problems by life cycles and developing customized web-based messages to the public. Based on survey results two types of card news were produced for the general public and youth. Additionally, the educational program was developed through a series of processes, such as prioritization of educational topics, setting educational goals for each stage, creation of a detailed educational system chart and teaching-learning plans for the development of educational materials and media.

The Design Improvement Plan of Seoul Forest Visitor Centers for Little Children (서울시 유아숲체험장의 공간 개선 방안)

  • Kim, Minjung;Jeong, Wookju
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.6
    • /
    • pp.49-63
    • /
    • 2021
  • The Forest Visitor Centers for Little Children who means preschoolers is an educational facility that achieves holistic growth by experiencing forests, and it should not be completed by installing specific facilities in the forest environment, but should be a space where preschoolers can play freely in the forest environment themselves. This study comprehensively evaluated the current status of Seoul Forest Visitor Centers for Little Children and suggested space improvement measures to enhance the effectiveness of forest experience. Through the theoretical review, seven spatial elements that enhance the effect of forest experience and six areas composing outdoor play areas were derived to prepare an analysis table for current status evaluation, and field survey studies were conducted on 24 centers in Seoul. Through expert interviews, the physical status was examined from the perspective of childhood education and the experiences of the users were summarized. As a result of the study, the Seoul Forest Visitor Center for Little Children is classified into six types according to the location characteristics and spatial structure, and has the characteristics of each type. The effectiveness of forest experience can be enhanced by identifying and revealing the environmental strengths of individual centers. In the case of outdoor experience learning zones, the proportion of exercise play areas was very large. By evenly organizing the forest experience space for each area, it will be possible to provide more diverse experiences to preschoolers. However, the status of uniform facility-oriented cannot be viewed as a fragmentary factor that lowers the effect of forest experience. The key to increasing the effect of forest experience by inducing creative activities is the spatial composition that considers the surrounding natural environment. Facilities should be a medium to help preschoolers' interest move into the forest. This study prepared data to understand the average physical status of the Seoul Forest Visitor Center for Little Children and suggested space improvement measures to increase the effectiveness of forest experience. This can be used as basic data for research to improve the quality level of the Seoul Forest Visitor Center for Little Children about 10 years after the project was implemented.

Analysis on Types of Scientific Emoticon Made by Science-Gifted Elementary School Students and their Perceptions on Making Scientific Emoticons (초등 과학영재 학생의 과학티콘 유형 및 과학티콘 만들기에 대한 인식 분석)

  • Jeong, Jiyeon;Kang, Hunsik
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.3
    • /
    • pp.311-324
    • /
    • 2022
  • This study analyzed the types of scientific emoticons made by science-gifted elementary school students and their perceptions on making scientific emoticons. To do this, 71 students from 4th to 6th graders of two gifted science education center in Seoul were selected. Scientific emoticons made by the students were analyzed according to the number and types. Their perceptions on making scientific emoticons were also analyzed through a questionnaire and group interviews. In the analyses for types of text in the scientific emoticons, 'word type' and 'sentence type' were made more than 'question and answer type'. And the majority of students made more 'pun using pronunciation type' and 'mixed type' than other types. They also made more 'graphic type' and 'animation type' than 'text type' in the images of the scientific emoticons. In the analyses for the information of the scientific emoticons, 'positive emotion type' and 'negative emotion type' of scientific emoticons were made evenly. The students made more 'new creation type' than 'partial correction type' and 'entire reconstruction type'. They also used scientific knowledge that preceded the knowledge of science curriculum in their grade level. The scientific knowledge of chemistry was used more than physics, biology, earth science, and combination field. 'Name utilization type' was more than 'characteristic utilization type' and 'principle utilization type'. Students had various positive perceptions in making scientific emoticons such as 'increase of scientific knowledge', 'increase of various higher-order thinking abilities', 'ease of explanation, use, memory, and understanding of scientific knowledge', 'increase of fun, enjoyment, and interest about science and science learning', and 'increase of opportunity to express emotions'. They were also aware of some limitations related to 'difficulties in the process of making scientific emoticons', 'lack of time', and 'limit that it may end just for fun'. Educational implications of these findings are discussed.

Analyzing Different Contexts for Energy Terms through Text Mining of Online Science News Articles (온라인 과학 기사 텍스트 마이닝을 통해 분석한 에너지 용어 사용의 맥락)

  • Oh, Chi Yeong;Kang, Nam-Hwa
    • Journal of Science Education
    • /
    • v.45 no.3
    • /
    • pp.292-303
    • /
    • 2021
  • This study identifies the terms frequently used together with energy in online science news articles and topics of the news reports to find out how the term energy is used in everyday life and to draw implications for science curriculum and instruction about energy. A total of 2,171 online news articles in science category published by 11 major newspaper companies in Korea for one year from March 1, 2018 were selected by using energy as a search term. As a result of natural language processing, a total of 51,224 sentences consisting of 507,901 words were compiled for analysis. Using the R program, term frequency analysis, semantic network analysis, and structural topic modeling were performed. The results show that the terms with exceptionally high frequencies were technology, research, and development, which reflected the characteristics of news articles that report new findings. On the other hand, terms used more than once per two articles were industry-related terms (industry, product, system, production, market) and terms that were sufficiently expected as energy-related terms such as 'electricity' and 'environment.' Meanwhile, 'sun', 'heat', 'temperature', and 'power generation', which are frequently used in energy-related science classes, also appeared as terms belonging to the highest frequency. From a network analysis, two clusters were found including terms related to industry and technology and terms related to basic science and research. From the analysis of terms paired with energy, it was also found that terms related to the use of energy such as 'energy efficiency,' 'energy saving,' and 'energy consumption' were the most frequently used. Out of 16 topics found, four contexts of energy were drawn including 'high-tech industry,' 'industry,' 'basic science,' and 'environment and health.' The results suggest that the introduction of the concept of energy degradation as a starting point for energy classes can be effective. It also shows the need to introduce high-tech industries or the context of environment and health into energy learning.

The impact of functional brain change by transcranial direct current stimulation effects concerning circadian rhythm and chronotype (일주기 리듬과 일주기 유형이 경두개 직류전기자극에 의한 뇌기능 변화에 미치는 영향 탐색)

  • Jung, Dawoon;Yoo, Soomin;Lee, Hyunsoo;Han, Sanghoon
    • Korean Journal of Cognitive Science
    • /
    • v.33 no.1
    • /
    • pp.51-75
    • /
    • 2022
  • Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation that is able to alter neuronal activity in particular brain regions. Many studies have researched how tDCS modulates neuronal activity and reorganizes neural networks. However it is difficult to conclude the effect of brain stimulation because the studies are heterogeneous with respect to the stimulation parameter as well as individual difference. It is not fully in agreement with the effects of brain stimulation. In particular few studies have researched the reason of variability of brain stimulation in response to time so far. The study investigated individual variability of brain stimulation based on circadian rhythm and chronotype. Participants were divided into two groups which are morning type and evening type. The experiment was conducted by Zoom meeting which is video meeting programs. Participants were sent experiment tool which are Muse(EEG device), tdcs device, cell phone and cell phone holder after manuals for experimental equipment were explained. Participants were required to make a phone in frount of a camera so that experimenter can monitor online EEG data. Two participants who was difficult to use experimental devices experimented in a laboratory setting where experimenter set up devices. For all participants the accuracy of 98% was achieved by SVM using leave one out cross validation in classification in the the effects of morning stimulation and the evening stimulation. For morning type, the accuracy of 92% and 96% was achieved in classification in the morning stimulation and the evening stimulation. For evening type, it was 94% accuracy in classification for the effect of brain stimulation in the morning and the evening. Feature importance was different both in classification in the morning stimulation and the evening stimulation for morning type and evening type. Results indicated that the effect of brain stimulation can be explained with brain state and trait. Our study results noted that the tDCS protocol for target state is manipulated by individual differences as well as target state.

Observation of Ice Gradient in Cheonji, Baekdu Mountain Using Modified U-Net from Landsat -5/-7/-8 Images (Landsat 위성 영상으로부터 Modified U-Net을 이용한 백두산 천지 얼음변화도 관측)

  • Lee, Eu-Ru;Lee, Ha-Seong;Park, Sun-Cheon;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1691-1707
    • /
    • 2022
  • Cheonji Lake, the caldera of Baekdu Mountain, located on the border of the Korean Peninsula and China, alternates between melting and freezing seasonally. There is a magma chamber beneath Cheonji, and variations in the magma chamber cause volcanic antecedents such as changes in the temperature and water pressure of hot spring water. Consequently, there is an abnormal region in Cheonji where ice melts quicker than in other areas, freezes late even during the freezing period, and has a high-temperature water surface. The abnormal area is a discharge region for hot spring water, and its ice gradient may be used to monitor volcanic activity. However, due to geographical, political and spatial issues, periodic observation of abnormal regions of Cheonji is limited. In this study, the degree of ice change in the optimal region was quantified using a Landsat -5/-7/-8 optical satellite image and a Modified U-Net regression model. From January 22, 1985 to December 8, 2020, the Visible and Near Infrared (VNIR) band of 83 Landsat images including anomalous regions was utilized. Using the relative spectral reflectance of water and ice in the VNIR band, unique data were generated for quantitative ice variability monitoring. To preserve as much information as possible from the visible and near-infrared bands, ice gradient was noticed by applying it to U-Net with two encoders, achieving good prediction accuracy with a Root Mean Square Error (RMSE) of 140 and a correlation value of 0.9968. Since the ice change value can be seen with high precision from Landsat images using Modified U-Net in the future may be utilized as one of the methods to monitor Baekdu Mountain's volcanic activity, and a more specific volcano monitoring system can be built.

High School Student Perception of the Relationships between Solar and Visible Radiation and between Terrestrial and Infrared Radiation (태양 복사와 가시광선 복사 및 지구 복사와 적외선 복사의 관계에 대한 고등학생들의 인식)

  • Lee, Jong-Jin;Seo, Eun-Kyoung;Ahn, Yumin
    • Journal of the Korean earth science society
    • /
    • v.43 no.2
    • /
    • pp.312-323
    • /
    • 2022
  • This study began with the hypothesis of whether "solar radiation" and "terrestrial radiation" can be replaced by "visible radiation" and "infrared radiation", respectively. To this end, we investigated the perceptions of high school students who completed the Earth Science I course through a questionnaire to reveal how they perceived each concept. We also analyzed the descriptions and illustrations of textbooks that may have affected their perceptions. All of the students who participated in the questionnaire recognized solar radiation as radiation emitted only in the visible light region. About 35% of the students recognized convection, conduction, and latent heat as energy transfer by radiation in the Earth's heat budget. By analyzing six types of Earth Science I textbooks in the 2015 revised curriculum, we observed that two types introduced the terms "shortwave radiation" and "longwave radiation" but had no explanation for them, while the other two described solar radiation as "radiation mainly in the visible light region" or "radiation in short wavelengths". Regarding solar and terrestrial radiation in the last two types, there was no explanation for the wavelength regions, or ambiguous terms such as "short wavelength" and "long wavelength" were used. In addition, the two textbooks contained some errors in the illustration of the energy budget. Considering that textbooks described solar and terrestrial radiation without defining the exact terms for shortwave and longwave radiation, learners are likely to recognize solar and terrestrial radiation as visible and infrared radiation, respectively. This finding implies that vague statements or errors in textbooks can cause or reproduce students' misconceptions. The discussion in this study is expected to be used as a helpful reference material for teaching and learning processes regarding the Earth's radiation equilibrium and heat budget, and thereby contribute to proposing reasonable description plans for future textbook writing.

Generation of Daily High-resolution Sea Surface Temperature for the Seas around the Korean Peninsula Using Multi-satellite Data and Artificial Intelligence (다종 위성자료와 인공지능 기법을 이용한 한반도 주변 해역의 고해상도 해수면온도 자료 생산)

  • Jung, Sihun;Choo, Minki;Im, Jungho;Cho, Dongjin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.707-723
    • /
    • 2022
  • Although satellite-based sea surface temperature (SST) is advantageous for monitoring large areas, spatiotemporal data gaps frequently occur due to various environmental or mechanical causes. Thus, it is crucial to fill in the gaps to maximize its usability. In this study, daily SST composite fields with a resolution of 4 km were produced through a two-step machine learning approach using polar-orbiting and geostationary satellite SST data. The first step was SST reconstruction based on Data Interpolate Convolutional AutoEncoder (DINCAE) using multi-satellite-derived SST data. The second step improved the reconstructed SST targeting in situ measurements based on light gradient boosting machine (LGBM) to finally produce daily SST composite fields. The DINCAE model was validated using random masks for 50 days, whereas the LGBM model was evaluated using leave-one-year-out cross-validation (LOYOCV). The SST reconstruction accuracy was high, resulting in R2 of 0.98, and a root-mean-square-error (RMSE) of 0.97℃. The accuracy increase by the second step was also high when compared to in situ measurements, resulting in an RMSE decrease of 0.21-0.29℃ and an MAE decrease of 0.17-0.24℃. The SST composite fields generated using all in situ data in this study were comparable with the existing data assimilated SST composite fields. In addition, the LGBM model in the second step greatly reduced the overfitting, which was reported as a limitation in the previous study that used random forest. The spatial distribution of the corrected SST was similar to those of existing high resolution SST composite fields, revealing that spatial details of oceanic phenomena such as fronts, eddies and SST gradients were well simulated. This research demonstrated the potential to produce high resolution seamless SST composite fields using multi-satellite data and artificial intelligence.