Multilayer feedforward networks may be applied to identify the deterministic relationship between input and output data. When the results from the network require a high level of assurance, consideration of the stochastic relationship between the input and output data may be very important. Variance is one of the effective parameters to deal with the stochastic relationship. This paper presents a new algroithm for a multilayer feedforward network to learn the variance of dispersed data without preliminary calculation of variance. In this paper, the network with this learning algorithm is named as a variance learning neural network(VALEAN). Computer simulation examples are utilized for the demonstration and the evaluation of VALEAN.
Qian, Zhuohao;Latt, Cho Nwe Zin;Kang, Sung-Won;Rhee, Kyung-Hyune
한국정보처리학회:학술대회논문집
/
한국정보처리학회 2022년도 춘계학술발표대회
/
pp.272-275
/
2022
The federated learning can be utilized in conjunction with the blockchain technology to provide good privacy protection and reward distribution mechanism in the field of intelligent IOT in edge computing scenarios. Nonetheless, the synchronous federated learning ignores the waiting delay due to the heterogeneity of edge devices (different computing power, communication bandwidth, and dataset size). Moreover, the potential of smart contracts was not fully explored to do some flexible design. This paper investigates the fusion application based on the FLchain, which is the combination of asynchronous federated learning and blockchain, discusses the communication optimization, and explores the feasible design of smart contract to solve some problems.
International Journal of Computer Science & Network Security
/
제24권5호
/
pp.89-94
/
2024
The main purpose of the study is to determine the main elements of the use of digital technologies for learning a foreign language in educational institutions. The era of digital technologies is a transition from the traditional format of working with information to a digital format. This is the era of the total domination of digital technologies. Digital technologies have gained an unprecedented rapid and general distribution. In recent years, all spheres of human life have already undergone the intervention of digital technologies. Therefore, it is precisely the educational industry that faces a difficult task - to move to a new level of education, where digital technologies will be actively used, allowing you to conveniently and quickly work in the information field for more effective learning and development. The study has limitations and they relate to the fact that the practical activities of the process of using digital technologies in the system of preparing the study of a foreign language were not taken into account.
E-Learning is another way of teaching and learning. E-learning is a networked phenomenon allowing for instant revisions and distribution, and goes beyond training and instruction to the delivery of information and tools to improve performance. The benefits of e-learning are many, including cost-effectiveness, enhanced responsiveness to change, consistency, timely content, flexible accessibility, and providing customer value. The proponents of e-learning stress the importance of using communities of interest to support and enhance the learning process. They also emphasizes that people learn more effectively when they interact and are involved with other people participating in similar endeavors. Although the role of e-learning in higher education has significantly increased, the resistance to new technology by professors and lecturers in university and colleges worldwide remains high. The purpose of this study is to identify the determinants of attitude and planned behavior toward e-learning class in universities. A survey methodology was used to investigate a proposed model of influence, and structural equation modeling was used to analyze the results. The hypothesized model was largely supported by this analysis, and the overall results indicate that attitude toward e-learning systems is mostly influenced by the perceived ease of use as well as the level of perceived usefulness, where both factors are influenced by years of experiences in using cyber system and the technical support level. As in other TAM related research, it can be concluded that the perceived ease of use and perceived usefulness contribute to the future use of e-learning system.
인공지능 기술은 스마트 시티, 자율 주행, 의료 분야 등 다양한 분야에서 활용 가능성을 높이 평가받고 있으나, 정보주체의 개인정보 및 민감정보의 노출 문제로 모델 활용이 제한되고 있다. 이에 따라 데이터를 중앙 서버에 모아서 학습하지 않고, 보유 데이터셋을 바탕으로 일차적으로 학습을 진행한 후 글로벌 모델을 최종적으로 학습하는 분산 기계 학습의 개념이 등장하였다. 그러나, 분산 기계 학습은 여전히 협력하여 학습을 진행하는 과정에서 데이터 프라이버시 위협이 발생한다. 본 연구는 분산 기계 학습 연구 분야에서 프라이버시를 보호하기 위한 연구를 서버의 존재 유무, 학습 데이터셋의 분포 환경, 참여자의 성능 차이 등 현재까지 제안된 분류 기준들을 바탕으로 유기적으로 분석하여 최신 연구 동향을 파악한다. 특히, 대표적인 분산 기계 학습 기법인 수평적 연합학습, 수직적 연합학습, 스웜 학습에 집중하여 활용된 프라이버시 보호 기법을 살펴본 후 향후 진행되어야 할 연구 방향을 모색한다.
Purpose: This study identifies how twelve key success factors of distribution strategies for community enterprises in Thailand achieve higher performances. Research design, data, and methodology: The samples in this study were 400 entrepreneurs throughout the country. The instrument for data elicitation was a questionnaire. The descriptive and inferential statistics for data analysis were percentage, mean, standard deviation, T-Test, F-Test, multiple regression, and multiple correlations. Results: The results revealed that, overall, the samples showed high opinions on online distribution strategies in all aspects. In detail, the three highest factors were as follows: 1) electronic satisfaction, 2) product characteristics and electronic trust, and 3) the quality and success in online distribution. In detail, the three highest aspects of online distribution success were customer loyalty, financial performance, and work management, respectively. The online distribution strategies influencing community enterprises' success were electronic trust, electronic loyalty, social information, electronic satisfaction, and online distribution tools, which had a statistical significance of 71. Conclusions: This research has made an essential contribution to community enterprise entrepreneurs should focus on and adopt these 8P+4ODS concepts to increase sales, maintain brand loyalty of existing customers, get new customers, develop learning, and improve the working potentials of community enterprise entrepreneurs.
빅데이터 분석에서 텍스트 데이터의 활용이 증가하고 있다. 따라서 텍스트 데이터의 분석 기법에 관한 많은 연구가 이루어지고 있다. 본 논문에서는 텍스트 데이터로부터 추출된 키워드 데이터의 분석을 위하여 공액사전분포 기반의 베이지안 학습 방법이 연구된다. 베이지안 통계학은 기존의 데이터에 새로운 데이터가 추가될 때마다 모수를 갱신하는 데이터 학습을 제공하기 때문에 시간에 따라 대용량의 데이터가 생성 및 추가되는 빅데이터 환경에서 효율적인 방법을 제공한다. 제안 방법의 성능과 적용 가능성을 보이기 위하여 실제 특허 빅데이터를 전처리하여 구축된 정형화된 키워드 데이터를 분석하는 사례연구를 수행한다.
Park, Seungtae;Jeong, Haedong;Min, Hyungcheol;Lee, Hojin;Lee, Seungchul
Smart Structures and Systems
/
제22권2호
/
pp.175-183
/
2018
Time-series data often contain one of the most valuable pieces of information in many fields including manufacturing. Because time-series data are relatively cheap to acquire, they (e.g., vibration signals) have become a crucial part of big data even in manufacturing shop floors. Recently, deep-learning models have shown state-of-art performance for analyzing big data because of their sophisticated structures and considerable computational power. Traditional models for a machinery-monitoring system have highly relied on features selected by human experts. In addition, the representational power of such models fails as the data distribution becomes complicated. On the other hand, deep-learning models automatically select highly abstracted features during the optimization process, and their representational power is better than that of traditional neural network models. However, the applicability of deep-learning models to the field of prognostics and health management (PHM) has not been well investigated yet. This study integrates the "residual fitting" mechanism inherently embedded in the wavelet transform into the convolutional neural network deep-learning structure. As a result, the architecture combines a signal smoother and classification procedures into a single model. Validation results from rotor vibration data demonstrate that our model outperforms all other off-the-shelf feature-based models.
At present, the existing virus recognition systems usually use signature approach to detect malicious executable files, but these methods often fail to detect new and invisible malware. At the same time, some methods try to use more general features to detect malware, and achieve some success. Moreover, machine learning-based approaches are applied to detect malware, which depend on features extracted from malicious codes. However, the different distribution of features oftraining and testing datasets also impacts the effectiveness of the detection models. And the generation oflabeled datasets need to spend a significant amount time, which degrades the performance of the learning method. In this paper, we use transfer learning to detect new and previously unseen malware. We first extract the features of Portable Executable (PE) files, then combine transfer learning training model with KNN approachto detect the new and unseen malware. We also evaluate the detection performance of a classifier in terms of precision, recall, F1, and so on. The experimental results demonstrate that proposed method with high detection rates andcan be anticipated to carry out as well in the real-world environment.
The Journal of Asian Finance, Economics and Business
/
제7권10호
/
pp.481-489
/
2020
The study examines the role of facilitating conditions and user habits in the use of technology in Online Learning Platform (OLP) in Indonesia. The adoption of online learning, persistence, and learning results in online platforms is essential for ensuring that education technology is implemented and gets as much value as possible. People who use technology and systems will embrace new technologies even more. This quantitative study is based on a survey of 254 respondents, who were active users of the technology, and considers the facilitating conditions and user habits variables. Two research hypotheses were tested using the Partial Least Square-Structural Equation Modeling method. Cronbach's Alpha, path coefficient, AVE, R-square, T-test were applied. The results showed that the factors significantly influence the Online Learning Platform technology behavioral intention. This impact is primarily associated with the availability of the resources required to use OLP technology. The availability of these resources includes supporting infrastructures such as widespread Internet access, easy access to mobile devices, and file sizes that affect access speed. The findings of this study suggest that it is necessary to introduce and increase the availability of resources for using OLP technology, and familiarize people with the technology features.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.