• 제목/요약/키워드: learning and memory

검색결과 1,266건 처리시간 0.037초

A study on new control mechanisms of memory

  • Liu, Haibin;Kakazu, Yukinori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.324-329
    • /
    • 1992
  • A physical phenomenon is observed through analysis of the Hodgkin-Huxley's model that is, according to Maxwell field equations a fired neuron can yield magnetic fields. The magnetic signals are an output of the neuron as some type of information, which may be supposed to be the conscious control information. Therefore, study on neural networks should take the field effect into consideration. Accordingly, a study on the behavior of a unit neuron in the field is made and a new neuron model is proposed. A mathematical Memory-Learning Relation has been derived from these new neuron equations, some concepts of memory and learning are introduced. Two learning theorems are put forward, and the control mechanisms of memory are also discussed. Finally, a theory, i.e. Neural Electromagnetic(NEM) field theory is advanced.

  • PDF

IoT 디바이스에서 다차원 디지털 신호 처리를 위한 신경망 최적화 (Neural networks optimization for multi-dimensional digital signal processing in IoT devices)

  • 최권택
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권6호
    • /
    • pp.1165-1173
    • /
    • 2017
  • 가장 대표적인 기계학습 알고리즘인 딥러닝 방법은 여러 응용 분야에서 활용성이 입증돼 디지털신호처리에 널리 사용되고 있다. 그러나 많은 학습데이터를 사용해 학습하는 과정에서 많은 메모리와 학습시간이 필요하기 때문에 CPU 성능과 메모리 용량이 제한된 IoT 디바이스에 딥러닝 기술을 적용하기는 어렵다. 특히 메모리 용량이 2K~8K 로 극히 적은 아두이노 기반의 디바이스를 사용한다면 알고리즘 구현에 많은 한계가 발생한다. 본 논문에서는 정확성과 효율성이 입증돼 여러 분야에서 활용되고 있는 ELM 알고리즘을 아두이노에서 최적화하는 방법을 제안하고, 실험을 통해 메모리 용량이 2KB인 아두이노 UNO와 메모리 용량이 8KB인 아두이노 MEGA에서 각각 15차원, 42차원의 다중 클래스 학습이 가능함을 보였다. 실험을 입증하기 위해 가우시안 혼합 모델링을 사용해 생성한 데이터셋과 범용적으로 사용하는 UCI 데이터셋을 사용해 제안한 알고리즘의 효율성을 입증하였다.

메모리 요소를 활용한 신경망 연구 동향 (A Survey on Neural Networks Using Memory Component)

  • 이지환;박진욱;김재형;김재인;노홍찬;박상현
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권8호
    • /
    • pp.307-324
    • /
    • 2018
  • 최근 순환 신경 망(Recurrent Neural Networks)은 시간에 대한 의존성을 고려한 구조를 통해 순차 데이터(Sequential data)의 예측 문제 해결에서 각광받고 있다. 하지만 순차 데이터의 시간 스텝이 늘어남에 따라 발생하는 그라디언트 소실(Gradients vanishing)이 문제로 대두되었다. 이를 해결하기 위해 장단기 기억 모델(Long Short-Term Memory)이 제안되었지만, 많은 데이터를 저장하고 장기간 보존하는 데에 한계가 있다. 따라서 순환 신경망과 메모리 요소(Memory component)를 활용한 학습 모델인 메모리-증대 신경망(Memory-Augmented Neural Networks)에 대한 연구가 최근 활발히 진행되고 있다. 본 논문에서는 딥 러닝(Deep Learning) 분야의 화두로 떠오른 메모리-증대 신경망 주요 모델들의 구조와 특징을 열거하고, 이를 활용한 최신 기법들과 향후 연구 방향을 제시한다.

이동 로봇을 위한 행위 기반 제어 및 학습 구조의 설계와 구현 (Design and Implementation of a Behavior-Based Control and Learning Architecture for Mobile Robots)

  • 서일홍;이상훈;김봉오
    • 제어로봇시스템학회논문지
    • /
    • 제9권7호
    • /
    • pp.527-535
    • /
    • 2003
  • A behavior-based control and learning architecture is proposed, where reinforcement learning is applied to learn proper associations between stimulus and response by using two types of memory called as short Term Memory and Long Term Memory. In particular, to solve delayed-reward problem, a knowledge-propagation (KP) method is proposed, where well-designed or well-trained S-R(stimulus-response) associations for low-level sensors are utilized to learn new S-R associations for high-level sensors, in case that those S-R associations require the same objective such as obstacle avoidance. To show the validity of our proposed KP method, comparative experiments are performed for the cases that (ⅰ) only a delayed reward is used, (ⅱ) some of S-R pairs are preprogrammed, (ⅲ) immediate reward is possible, and (ⅳ) the proposed KP method is applied.

Text Classification Method Using Deep Learning Model Fusion and Its Application

  • 신성윤;조광현;조승표;이현창
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.409-410
    • /
    • 2022
  • 본 논문은 LSTM(Long-Short Term Memory) 네트워크와 CNN 딥러닝 기법을 기반으로 하는 융합 모델을 제안하고 다중 카테고리 뉴스 데이터 세트에 적용하여 좋은 결과를 얻었다. 실험에 따르면 딥 러닝 기반의 융합 모델이 텍스트 감정 분류의 정밀도와 정확도를 크게 향상시켰다. 이 방법은 모델을 최적화하고 모델의 성능을 향상시키는 중요한 방법이 될 것이다.

  • PDF

학습과 기억의 생물학적 기초(I):신경심리학적 개관 (The Biological Base of Learing and Memory(I):A Neuropsychological Review)

  • 김문수
    • 인지과학
    • /
    • 제7권3호
    • /
    • pp.7-36
    • /
    • 1996
  • 본 논문에서는 인간을 대상으로 한 신경심리학적 연구결과들을 중심으로 기억의 뇌생리적 기초에 관하여 지금까지 알려진 바를 개관하고자 하였다. 현재 인지심리학자들은 기억이 하나의 단일한 체계가 아니라 여러가지 독자적인 하위체계들로 구분된다고 생각한다. 이러한 다중기억체계의 관점을 따라 본 논문에서는 뇌의 어느부위가 손상될때 어떤 종류의 기억에 장애가 생기는가,그리고 뇌영상 기법을 사용하요 특정 기억과제를 수행하는 도중에 뇌의 어느 부위가 그 제시방식에 따라 약간씩 다르지만 대개 후두염,두정엽,그리고 측두엽의 경계선을 중심으로 한 비교적 넓은 부위가 중요한 것으로 보인다. 장기기억의 경우,그 한 하위체계인 암묵기억은 하나의 단일한 기억체계가 아니어서 어떤 학습과제가 사용되는가에 다라 관련되는 부위가 많이 달라진다. 반면에 외현기억의 형성(즉,응고화)에는 내측측두엽이 결정적인 역할을 한다는 사실을 잘 알려져 있다. 일화기억과 의미기억의 저장 그리고/또는 인출에는 측두피질과 전두전피질이 중요한 역할을 하는것으로 보인다. 끝으로,장기기억의 저장장소에 관한 최근의 견해가 소개되었다.

  • PDF

Sentiment Orientation Using Deep Learning Sequential and Bidirectional Models

  • Alyamani, Hasan J.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권11호
    • /
    • pp.23-30
    • /
    • 2021
  • Sentiment Analysis has become very important field of research because posting of reviews is becoming a trend. Supervised, unsupervised and semi supervised machine learning methods done lot of work to mine this data. Feature engineering is complex and technical part of machine learning. Deep learning is a new trend, where this laborious work can be done automatically. Many researchers have done many works on Deep learning Convolutional Neural Network (CNN) and Long Shor Term Memory (LSTM) Neural Network. These requires high processing speed and memory. Here author suggested two models simple & bidirectional deep leaning, which can work on text data with normal processing speed. At end both models are compared and found bidirectional model is best, because simple model achieve 50% accuracy and bidirectional deep learning model achieve 99% accuracy on trained data while 78% accuracy on test data. But this is based on 10-epochs and 40-batch size. This accuracy can also be increased by making different attempts on epochs and batch size.

자율 이동 로봇의 주행을 위한 영역 기반 Q-learning (Region-based Q- learning For Autonomous Mobile Robot Navigation)

  • 차종환;공성학;서일홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.174-174
    • /
    • 2000
  • Q-learning, based on discrete state and action space, is a most widely used reinforcement Learning. However, this requires a lot of memory and much time for learning all actions of each state when it is applied to a real mobile robot navigation using continuous state and action space Region-based Q-learning is a reinforcement learning method that estimates action values of real state by using triangular-type action distribution model and relationship with its neighboring state which was defined and learned before. This paper proposes a new Region-based Q-learning which uses a reward assigned only when the agent reached the target, and get out of the Local optimal path with adjustment of random action rate. If this is applied to mobile robot navigation, less memory can be used and robot can move smoothly, and optimal solution can be learned fast. To show the validity of our method, computer simulations are illusrated.

  • PDF

성향정기산(星香正氣散)이 NOS Inhibitor 투여(投與)에 의한 백서(白鼠)의 학습(學習) 및 기억장애(記憶障碍)에 미치는 영향(影響) (The Effect of Sunghyangjungkisan on the Learning and memory of Nitric Oxide Synthase Inhibitor-treated rats in the Morris Water Maze.)

  • 박정현;김종우;황의환
    • 동의신경정신과학회지
    • /
    • 제10권2호
    • /
    • pp.105-113
    • /
    • 1999
  • The purpose of this study was to investigate the effect of Sunhyangjungkisan on the learning and memory ability in rats. For this purpose we have evoked cerebral dysfunction in rats with NOS inhibitor and then performed the Morris water maze task for each rat. We have found that Sunghyangjungkisan have some improving effedts on impaired learning and memort ability in the NOS inhibitor treated rat. In these improving effects, memory effect was more evident then learning effect. This result implies that Sunghyangjungkisan may be one of useful prescriptions for treatment of vascular dementia after cerebral ischemia.

  • PDF

조위승청탕(調胃升淸湯)이 흰쥐의 방사형 미로 학습과 기억에 미치는 영향(影響) (An Experimental Study on the Effects of Jowiseungchungtang on Learning and Memory of Rats in the Radial-Arm Maze)

  • 우주영;김종우;황의완;김현택;박순권
    • 동의신경정신과학회지
    • /
    • 제8권1호
    • /
    • pp.69-79
    • /
    • 1997
  • This study was conducted to find out the effects of Jowiseungchungtang on learning and memory of rats. For this purpose, the radial-arm maze was used. The results of the study were summarized as follows.1. It was shown that the rate of rats that met the learning criteria when performing the learning is that the control group amounted to 40.0% while the Jowiseungchungtang group did 73.3%. The other showed higher learning effect than the one but there was no statistical significance.2. In the retention test performed with rats that met the learning criteria, the frequency of errors made by the two groups was 3.33$\pm$2.25 times for the control group and 1.36$\pm$1.12 times for Jowisrungchungtang group. The other was remarkably lower than the one in the frequency of errors.In conclusion, the study suggested that the Jowiseungchungtang have an effect on improvement of learning and memory.

  • PDF