A physical phenomenon is observed through analysis of the Hodgkin-Huxley's model that is, according to Maxwell field equations a fired neuron can yield magnetic fields. The magnetic signals are an output of the neuron as some type of information, which may be supposed to be the conscious control information. Therefore, study on neural networks should take the field effect into consideration. Accordingly, a study on the behavior of a unit neuron in the field is made and a new neuron model is proposed. A mathematical Memory-Learning Relation has been derived from these new neuron equations, some concepts of memory and learning are introduced. Two learning theorems are put forward, and the control mechanisms of memory are also discussed. Finally, a theory, i.e. Neural Electromagnetic(NEM) field theory is advanced.
가장 대표적인 기계학습 알고리즘인 딥러닝 방법은 여러 응용 분야에서 활용성이 입증돼 디지털신호처리에 널리 사용되고 있다. 그러나 많은 학습데이터를 사용해 학습하는 과정에서 많은 메모리와 학습시간이 필요하기 때문에 CPU 성능과 메모리 용량이 제한된 IoT 디바이스에 딥러닝 기술을 적용하기는 어렵다. 특히 메모리 용량이 2K~8K 로 극히 적은 아두이노 기반의 디바이스를 사용한다면 알고리즘 구현에 많은 한계가 발생한다. 본 논문에서는 정확성과 효율성이 입증돼 여러 분야에서 활용되고 있는 ELM 알고리즘을 아두이노에서 최적화하는 방법을 제안하고, 실험을 통해 메모리 용량이 2KB인 아두이노 UNO와 메모리 용량이 8KB인 아두이노 MEGA에서 각각 15차원, 42차원의 다중 클래스 학습이 가능함을 보였다. 실험을 입증하기 위해 가우시안 혼합 모델링을 사용해 생성한 데이터셋과 범용적으로 사용하는 UCI 데이터셋을 사용해 제안한 알고리즘의 효율성을 입증하였다.
최근 순환 신경 망(Recurrent Neural Networks)은 시간에 대한 의존성을 고려한 구조를 통해 순차 데이터(Sequential data)의 예측 문제 해결에서 각광받고 있다. 하지만 순차 데이터의 시간 스텝이 늘어남에 따라 발생하는 그라디언트 소실(Gradients vanishing)이 문제로 대두되었다. 이를 해결하기 위해 장단기 기억 모델(Long Short-Term Memory)이 제안되었지만, 많은 데이터를 저장하고 장기간 보존하는 데에 한계가 있다. 따라서 순환 신경망과 메모리 요소(Memory component)를 활용한 학습 모델인 메모리-증대 신경망(Memory-Augmented Neural Networks)에 대한 연구가 최근 활발히 진행되고 있다. 본 논문에서는 딥 러닝(Deep Learning) 분야의 화두로 떠오른 메모리-증대 신경망 주요 모델들의 구조와 특징을 열거하고, 이를 활용한 최신 기법들과 향후 연구 방향을 제시한다.
A behavior-based control and learning architecture is proposed, where reinforcement learning is applied to learn proper associations between stimulus and response by using two types of memory called as short Term Memory and Long Term Memory. In particular, to solve delayed-reward problem, a knowledge-propagation (KP) method is proposed, where well-designed or well-trained S-R(stimulus-response) associations for low-level sensors are utilized to learn new S-R associations for high-level sensors, in case that those S-R associations require the same objective such as obstacle avoidance. To show the validity of our proposed KP method, comparative experiments are performed for the cases that (ⅰ) only a delayed reward is used, (ⅱ) some of S-R pairs are preprogrammed, (ⅲ) immediate reward is possible, and (ⅳ) the proposed KP method is applied.
본 논문은 LSTM(Long-Short Term Memory) 네트워크와 CNN 딥러닝 기법을 기반으로 하는 융합 모델을 제안하고 다중 카테고리 뉴스 데이터 세트에 적용하여 좋은 결과를 얻었다. 실험에 따르면 딥 러닝 기반의 융합 모델이 텍스트 감정 분류의 정밀도와 정확도를 크게 향상시켰다. 이 방법은 모델을 최적화하고 모델의 성능을 향상시키는 중요한 방법이 될 것이다.
본 논문에서는 인간을 대상으로 한 신경심리학적 연구결과들을 중심으로 기억의 뇌생리적 기초에 관하여 지금까지 알려진 바를 개관하고자 하였다. 현재 인지심리학자들은 기억이 하나의 단일한 체계가 아니라 여러가지 독자적인 하위체계들로 구분된다고 생각한다. 이러한 다중기억체계의 관점을 따라 본 논문에서는 뇌의 어느부위가 손상될때 어떤 종류의 기억에 장애가 생기는가,그리고 뇌영상 기법을 사용하요 특정 기억과제를 수행하는 도중에 뇌의 어느 부위가 그 제시방식에 따라 약간씩 다르지만 대개 후두염,두정엽,그리고 측두엽의 경계선을 중심으로 한 비교적 넓은 부위가 중요한 것으로 보인다. 장기기억의 경우,그 한 하위체계인 암묵기억은 하나의 단일한 기억체계가 아니어서 어떤 학습과제가 사용되는가에 다라 관련되는 부위가 많이 달라진다. 반면에 외현기억의 형성(즉,응고화)에는 내측측두엽이 결정적인 역할을 한다는 사실을 잘 알려져 있다. 일화기억과 의미기억의 저장 그리고/또는 인출에는 측두피질과 전두전피질이 중요한 역할을 하는것으로 보인다. 끝으로,장기기억의 저장장소에 관한 최근의 견해가 소개되었다.
International Journal of Computer Science & Network Security
/
제21권11호
/
pp.23-30
/
2021
Sentiment Analysis has become very important field of research because posting of reviews is becoming a trend. Supervised, unsupervised and semi supervised machine learning methods done lot of work to mine this data. Feature engineering is complex and technical part of machine learning. Deep learning is a new trend, where this laborious work can be done automatically. Many researchers have done many works on Deep learning Convolutional Neural Network (CNN) and Long Shor Term Memory (LSTM) Neural Network. These requires high processing speed and memory. Here author suggested two models simple & bidirectional deep leaning, which can work on text data with normal processing speed. At end both models are compared and found bidirectional model is best, because simple model achieve 50% accuracy and bidirectional deep learning model achieve 99% accuracy on trained data while 78% accuracy on test data. But this is based on 10-epochs and 40-batch size. This accuracy can also be increased by making different attempts on epochs and batch size.
Q-learning, based on discrete state and action space, is a most widely used reinforcement Learning. However, this requires a lot of memory and much time for learning all actions of each state when it is applied to a real mobile robot navigation using continuous state and action space Region-based Q-learning is a reinforcement learning method that estimates action values of real state by using triangular-type action distribution model and relationship with its neighboring state which was defined and learned before. This paper proposes a new Region-based Q-learning which uses a reward assigned only when the agent reached the target, and get out of the Local optimal path with adjustment of random action rate. If this is applied to mobile robot navigation, less memory can be used and robot can move smoothly, and optimal solution can be learned fast. To show the validity of our method, computer simulations are illusrated.
The purpose of this study was to investigate the effect of Sunhyangjungkisan on the learning and memory ability in rats. For this purpose we have evoked cerebral dysfunction in rats with NOS inhibitor and then performed the Morris water maze task for each rat. We have found that Sunghyangjungkisan have some improving effedts on impaired learning and memort ability in the NOS inhibitor treated rat. In these improving effects, memory effect was more evident then learning effect. This result implies that Sunghyangjungkisan may be one of useful prescriptions for treatment of vascular dementia after cerebral ischemia.
This study was conducted to find out the effects of Jowiseungchungtang on learning and memory of rats. For this purpose, the radial-arm maze was used. The results of the study were summarized as follows.1. It was shown that the rate of rats that met the learning criteria when performing the learning is that the control group amounted to 40.0% while the Jowiseungchungtang group did 73.3%. The other showed higher learning effect than the one but there was no statistical significance.2. In the retention test performed with rats that met the learning criteria, the frequency of errors made by the two groups was 3.33$\pm$2.25 times for the control group and 1.36$\pm$1.12 times for Jowisrungchungtang group. The other was remarkably lower than the one in the frequency of errors.In conclusion, the study suggested that the Jowiseungchungtang have an effect on improvement of learning and memory.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.