• Title/Summary/Keyword: learning algorithms

Search Result 2,317, Processing Time 0.023 seconds

A New Hyper Parameter of Hounsfield Unit Range in Liver Segmentation

  • Kim, Kangjik;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.103-111
    • /
    • 2020
  • Liver cancer is the most fatal cancer that occurs worldwide. In order to diagnose liver cancer, the patient's physical condition was checked by using a CT technique using radiation. Segmentation was needed to diagnose the liver on the patient's abdominal CT scan, which the radiologists had to do manually, which caused tremendous time and human mistakes. In order to automate, researchers attempted segmentation using image segmentation algorithms in computer vision field, but it was still time-consuming because of the interactive based and the setting value. To reduce time and to get more accurate segmentation, researchers have begun to attempt to segment the liver in CT images using CNNs, which show significant performance in various computer vision fields. The pixel value, or numerical value, of the CT image is called the Hounsfield Unit (HU) value, which is a relative representation of the transmittance of radiation, and usually ranges from about -2000 to 2000. In general, deep learning researchers reduce or limit this range and use it for training to remove noise and focus on the target organ. Here, we observed that the range of HU values was limited in many studies but different in various liver segmentation studies, and assumed that performance could vary depending on the HU range. In this paper, we propose the possibility of considering HU value range as a hyper parameter. U-Net and ResUNet were used to compare and experiment with different HU range limit preprocessing of CHAOS dataset under limited conditions. As a result, it was confirmed that the results are different depending on the HU range. This proves that the range limiting the HU value itself can be a hyper parameter, which means that there are HU ranges that can provide optimal performance for various models.

A Comparative Analysis of Decimal Numbers in Elementary Mathematics Textbooks of Korea, Japan, Singapore and The US (한국, 일본, 싱가포르, 미국의 초등학교 수학 교과서에 제시된 소수 개념 지도 방안에 대한 비교 분석)

  • Kim, JeongWon;Kwon, Sungyong
    • School Mathematics
    • /
    • v.19 no.1
    • /
    • pp.209-228
    • /
    • 2017
  • Understanding decimal numbers is important in mathematics as well as real-life contexts. However, lots of students focus on procedures or algorithms of decimal numbers without understanding its meanings. This study analyzed teaching method related to decimal numbers in a series of mathematics textbooks of Korea, Japan, Singapore and the US. The results showed that three countries except Japan introduced the decimal numbers as another name of fraction, which highlights the relation between the concept of decimal numbers and fractions. And limited meanings of decimal numbers were shown such as 'equal parts of a whole' and 'measurement'. Especially in the korean textbooks, relationships between the decimals were dealt instrumentally and small number of models such as number lines or $10{\times}10$ grids were used repeatedly. Based these results, this study provides implications on what and how to deal with decimal numbers in teaching and learning decimal numbers with textbooks.

The Improvement of High Convergence Speed using LMS Algorithm of Data-Recycling Adaptive Transversal Filter in Direct Sequence Spread Spectrum (직접순차 확산 스펙트럼 시스템에서 데이터 재순환 적응 횡단선 필터의 LMS 알고리즘을 이용한 고속 수렴 속도 개선)

  • Kim, Gwang-Jun;Yoon, Chan-Ho;Kim, Chun-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.22-33
    • /
    • 2005
  • In this paper, an efficient signal interference control technique to improve the high convergence speed of LMS algorithms is introduced in the adaptive transversal filter of DS/SS. The convergence characteristics of the proposed algorithm, whose coefficients are multiply adapted in a symbol time period by recycling the received data, is analyzed to prove theoretically the improvement of high convergence speed. According as the step-size parameter ${\mu}$ is increased, the rate of convergence of the algorithm is controlled. Also, an increase in the stop-size parameter ${\mu}$ has the effect of reducing the variation in the experimentally computed learning curve. Increasing the eigenvalue spread has the effect of controlling which is downed the rate of convergence of the adaptive equalizer. Increasing the steady-state value of the average squared error, proposed algorithm also demonstrate the superiority of signal interference control to the filter algorithm increasing convergence speed by (B+1) times due to the data-recycling LMS technique.

Super-Pixel-Based Segmentation and Classification for UAV Image (슈퍼 픽셀기반 무인항공 영상 영역분할 및 분류)

  • Kim, In-Kyu;Hwang, Seung-Jun;Na, Jong-Pil;Park, Seung-Je;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.2
    • /
    • pp.151-157
    • /
    • 2014
  • Recently UAV(unmanned aerial vehicle) is frequently used not only for military purpose but also for civil purpose. UAV automatically navigates following the coordinates input in advance using GPS information. However it is impossible when GPS cannot be received because of jamming or external interference. In order to solve this problem, we propose a real-time segmentation and classification algorithm for the specific regions from UAV image in this paper. We use the super-pixels algorithm using graph-based image segmentation as a pre-processing stage for the feature extraction. We choose the most ideal model by analyzing various color models and mixture color models. Also, we use support vector machine for classification, which is one of the machine learning algorithms and can use small quantity of training data. 18 color and texture feature vectors are extracted from the UAV image, then 3 classes of regions; river, vinyl house, rice filed are classified in real-time through training and prediction processes.

Elliptical Clustering with Incremental Growth and its Application to Skin Color Region Segmentation (점증적으로 증가하는 타원형 군집화 : 피부색 영역 검출에의 적용)

  • Lee Kyoung-Mi
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.9
    • /
    • pp.1161-1170
    • /
    • 2004
  • This paper proposes to segment skin color areas using a clustering algorithm. Most of previously proposed clustering algorithms have some difficulties, since they generally detect hyperspherical clusters, run in a batch mode, and predefine a number of clusters. In this paper, we use a well-known elliptical clustering algorithm, an EM algorithm, and modify it to learn on-line and find automatically the number of clusters, called to an EAM algorithm. The effectiveness of the EAM algorithm is demonstrated on a task of skin color region segmentation. Experimental results present the EAM algorithm automatically finds a right number of clusters in a given image without any information on the number. Comparing with the EM algorithm, we achieved better segmentation results with the EAM algorithm. Successful results were achieved to detect and segment skin color regions using a conditional probability on a region. Also, we applied to classify images with persons and got good classification results.

Center-based Shared Route Decision Algorithms for Multicasting Services (멀티캐스트 서비스를 위한 센터기반 공유형 경로 지정 방법)

  • Cho, Kee-Sung;Jang, Hee-Seon;Kim, Dong-Whee
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.4
    • /
    • pp.49-55
    • /
    • 2007
  • Recently, with the IPTV services, e-learning, real-time broadcasting and e-contents, many application services need the multicasting routing protocol. In this paper, the performance of the algorithm to assign the rendezvous router (RP: rendezvous point) in the center-based multicasting mesh network is analyzed. The estimated distance to select RP in the candidate nodes is calculated, and the node minimizing the distance is selected as the optimal RP. We estimate the distance by using the maximum distance, average distance, and mean of the maximum and average distance between the RP and members. The performance of the algorithm is compared with the optimal algorithm of all enumeration. With the assumptions of mesh network and randomly positioned for sources and members, the simulations for different parameters are studied. From the simulation results, the performance deviation between the algorithm with minimum cost and optimal method is evaluated as 6.2% average.

Efficient Hardware Transactional Memory Scheme for Processing Transactions in Multi-core In-Memory Environment (멀티코어 인메모리 환경에서 트랜잭션을 처리하기 위한 효율적인 HTM 기법)

  • Jang, Yeonwoo;Kang, Moonhwan;Yoon, Min;Chang, Jaewoo
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.8
    • /
    • pp.466-472
    • /
    • 2017
  • Hardware Transactional Memory (HTM) has greatly changed the parallel programming paradigm for transaction processing. Since Intel has recently proposed Transactional Synchronization Extension (TSX), a number of studies based on HTM have been conducted. However, the existing studies support conflict prediction for a single cause of the transaction processing and provide a standardized TSX environment for all workloads. To solve the problems, we propose an efficient hardware transactional memory scheme for processing transactions in multi-core in-memory environment. First, the proposed scheme determines whether to use Software Transactional Memory (STM) or the serial execution as a fallback path of HTM by using a prediction matrix to collect the information of previously executed transactions. Second, the proposed scheme performs efficient transaction processing according to the characteristic of a given workload by providing a retry policy based on machine learning algorithms. Finally, through the experimental performance evaluation using Stanford transactional applications for multi-processing (STAMP), the proposed scheme shows 10~20% better performance than the existing schemes.

A Study on the Industrial Application of Image Recognition Technology (이미지 인식 기술의 산업 적용 동향 연구)

  • Song, Jaemin;Lee, Sae Bom;Park, Arum
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.7
    • /
    • pp.86-96
    • /
    • 2020
  • Based on the use cases of image recognition technology, this study looked at how artificial intelligence plays a role in image recognition technology. Through image recognition technology, satellite images can be analyzed with artificial intelligence to reveal the calculation of oil storage tanks in certain countries. And image recognition technology makes it possible for searching images or products similar to images taken or downloaded by users, as well as arranging fruit yields, or detecting plant diseases. Based on deep learning and neural network algorithms, we can recognize people's age, gender, and mood, confirming that image recognition technology is being applied in various industries. In this study, we can look at the use cases of domestic and overseas image recognition technology, as well as see which methods are being applied to the industry. In addition, through this study, the direction of future research was presented, focusing on various successful cases in which image recognition technology was implemented and applied in various industries. At the conclusion, it can be considered that the direction in which domestic image recognition technology should move forward in the future.

Clustering-based Statistical Machine Translation Using Syntactic Structure and Word Similarity (문장구조 유사도와 단어 유사도를 이용한 클러스터링 기반의 통계기계번역)

  • Kim, Han-Kyong;Na, Hwi-Dong;Li, Jin-Ji;Lee, Jong-Hyeok
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.4
    • /
    • pp.297-304
    • /
    • 2010
  • Clustering method which based on sentence type or document genre is a technique used to improve translation quality of SMT(statistical machine translation) by domain-specific translation. But there is no previous research using sentence type and document genre information simultaneously. In this paper, we suggest an integrated clustering method that classifying sentence type by syntactic structure similarity and document genre by word similarity information. We interpolated domain-specific models from clusters with general models to improve translation quality of SMT system. Kernel function and cosine measures are applied to calculate structural similarity and word similarity. With these similarities, we used machine learning algorithms similar to K-means to clustering. In Japanese-English patent translation corpus, we got 2.5% point relative improvements of translation quality at optimal case.

A Dynamic Update Engine of IPS for a DoS Attack Prevention of VoIP (VoIP의 DoS공격 차단을 위한 IPS의 동적 업데이트엔진)

  • Cheon, Jae-Hong;Park, Dea-Woo
    • KSCI Review
    • /
    • v.14 no.2
    • /
    • pp.235-244
    • /
    • 2006
  • This paper attacked the unknown DoS which mixed a DoS attack, Worm and the Trojan horse which used IP Source Address Spoofing and Smurf through the SYN Flooding way that UDP, ICMP, Echo, TCP Syn packet operated. the applications that used TCP/UDP in VoIP service networks. Define necessity of a Dynamic Update Engine for a prevention, and measure Miss traffic at RT statistics of inbound and outbound parts in case of designs of an engine at IPS regarding an Self-learning module and a statistical attack spread. and design a logic engine module. Three engines judge attack grades (Attack Suspicious, Normal), and keep the most suitable filtering engine state through AND or OR algorithms at Footprint Lookup modules. A Real-Time Dynamic Engine and Filter updated protected VoIP service from DoS attacks, and strengthened Ubiquitous Security anger, and were turned out to be.

  • PDF