• Title/Summary/Keyword: learning Evaluation

Search Result 3,588, Processing Time 0.04 seconds

A Case Study on the Establishment of a Strategy System through the BSC of SMEs (중소기업의 BSC를 통한 전략체계 구축 사례연구)

  • Lim HeonWook;Kim WooSu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.303-308
    • /
    • 2023
  • The purpose of this study is to provide a practical guide for establishing BSC that can be practically applied by SMEs. To this end, a case study was conducted to establish a performance evaluation system through a field-required Balanced Scorecard (BSC) for company J, a tent pole manufacturer, and to provide a management strategy system map. As a survey method, the requirements of the ordering organization were organized through a comparison of the BSC-related proposal requests in the first stage. The BSC establishment method was organized through the arrangement of the second stage result report. The 3rd stage BSC derived KPI indicators for SMEs for each of the 4 perspectives. A corporate vision was derived through a 4-step SWOT analysis. A strategy map was developed through 5-step field-required KPI, weight setting, and BSC. The 6-step final strategy system was also drawn up. As a result of the study, the four perspectives of the BSC were reconstructed by department. That is, the financial (financial) perspective is from the executives' perspective, the customer's perspective is from the sales department's perspective, the internal process perspective is from the design department/production quality department's perspective, and the learning/innovation perspective is from the management department's perspective. In addition, a total of 11 CSFs and a total of 49 KPIs of J company were derived. The limitation of the study is that the final strategy system through the company's BSC has only been carried out, and it needs to be linked with the company's compensation system in the future.

A Study on the Recognition of University Larchive and its Practical Operation Plans (대학교 라카이브(Larchive) 인식 조사 및 실무 운영 방안)

  • Park, Do-Won;Oh, Hyo-Jung
    • The Korean Journal of Archival Studies
    • /
    • no.77
    • /
    • pp.151-187
    • /
    • 2023
  • The cooperation between archives and libraries is necessary for the management of limited operational space and the improvement of work efficiency. "Larchive" is one of the model of cooperation between libraries and archives, so it can be an alternative plan for institutions that face difficulties in collaborating through "Larchiveum" - growing model of cooperation between libraries, archives, and museums. This study presents the recognition of Larchive to university archivists and librarians, and suggests a practical operation plan for cooperation between the archive and library. As a result, "Larchive" was relatively less aware of archivists and librarians, but in the practical point of view, respondents were fully aware of the need for cooperation between archives and libraries. In particular, Larchive was presented as a rational alternative model for both of the groups. And the need for material cooperation can be confirmed through the recognition survey, and the improvement plan for business cooperation can be confirmed through the FGI. Some prerequisites are proposed such as securing a collaborative workplace, assignment of budget and manpower. Through the results, this study presented practical operational plans for organizational cooperation in the form of Larchive, focusing on the perspectives of "teaching and learning support", "research support services", "curation services", "collection and management of school history data", "cooperation for evaluation", and drew discussion points.

The Realities and Problems of Master Teacher System in China (중국 특급교사제(特級敎師制) 운영실태 분석 및 시사점)

  • Kim, Ee-Gyeong;LI, Jia-Yi
    • Korean Journal of Comparative Education
    • /
    • v.24 no.6
    • /
    • pp.163-185
    • /
    • 2014
  • Along with concerns about deteriorating social and economic status of teachers around the world, Master Teacher System(MTS) has been considered as one of the alternatives to transform teaching profession into a more attractive job. In this study, the conditions and problems associated with the MTS in China is analyzed to draw implications for South Korea, which recently legalized the MTS. Research framework including four research questions is developed based on the controversies surrounding MTS of South Korea. The main findings show that the MTS in China was introduced to improve teachers' social and economic status along with the quality of prospective teachers. A very small number of master teachers are selected through rigorous standards including longer service period. They are given additional monetary and non-monetary compensations in return for their teaching-learning leadership and responsibilities. As highly respected educators, they enjoy the lifelong benefits, although they are annually evaluated. It is evident that the MTS has contributed to improving the attractiveness of teaching profession in China. Nevertheless, there are many problems associated with selection standards and methods of master teachers, their roles, compensation, evaluation and terms of service. Recent criticism due to changing circumstances surrounding education in China makes the MTS more questionable. Based on the findings, major implications for future directions of MTS of South Korea are drawn and suggested.

Open-Ended Response Analysis for University Course Evaluations using Topic Modeling (토픽 모델링을 활용한 대학 강의평가 개방형 응답분석)

  • Su-Hyun Ahn;Sang-Jun Lee
    • Journal of Practical Engineering Education
    • /
    • v.15 no.3
    • /
    • pp.539-547
    • /
    • 2023
  • In recent years, university education has emphasized a learner-centered education model with a change in educational paradigm. This study aims to explore students' diverse opinions and improve the quality of education by analyzing the open-ended responses of university lecture evaluations using topic modeling. To this end, a total of 45,001 open-ended responses based on the results of lecture evaluations from 2017 to 2022 in non-metropolitan universities were divided into majors and liberal arts, and a short-form optimized Biterm Topic Modeling (BTM) analysis was conducted. As a result of the analysis, major lectures were divided into "attitude toward non-face-to-face classroom experience", "attitude toward questions and discussions", "attitude toward attendance and grading", "attitude toward practical activities and presentations", and "attitude toward communication and collaboration", while liberal arts lectures were divided into "attitude toward non-face-to-face classroom experience", "attitude toward grades and evaluations", "attitude toward attendance and syllabus", "attitude toward academic knowledge and interest", and "attitude toward communication and questions". The results of this study, which analyzed various feedback from students, provide insights that can be used to compare the characteristics of majors and liberal arts courses and improve teaching and learning experiences.

A Study on Elbow Phantom Production and Usability Evaluation by Adjusting Infill Density using 3D Printing (3D 프린팅을 사용한 Infill 조절에 따른 Elbow 팬텀 제작 및 유용성 평가에 관한 연구)

  • Myung-In Kim;Seung-Ho Ji;Hyun-Seop Wi;Dae-Won Lee;Hui-Min Jang;Myeong-Seong Yun;Dong-Kyoon Han
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.929-937
    • /
    • 2023
  • Human equivalent phantoms manufactured using 3D printers are cheaper and can be manufactured in a short time than conventional human phantoms. However, many phantoms are manufactured with less than 100 % of Infill Density, one of the 3D printer output setting variables. Therefore, this study compared the Bone Phantom CT number, which differs from the ratio of five Infill Density produced using a 3D printer, to the CT number of the actual human body Bone. In addition, the usefulness of the manufactured phantom was evaluated by producing a 100 % elbow joint phantom with Infill Density and setting the Infill Density to 100 % through CT number comparison for each tissue on computed tomography (CT). As a result, the Bone Phantom printed with 100 % Infill Density did not show the most statistically significant difference from the CT number value of the actual human Bone, and the CT number of each tissue did not show a statistically significant difference from the CT number value of each tissue of the actual human elbow joint.

A Groundwater Potential Map for the Nakdonggang River Basin (낙동강권역의 지하수 산출 유망도 평가)

  • Soonyoung Yu;Jaehoon Jung;Jize Piao;Hee Sun Moon;Heejun Suk;Yongcheol Kim;Dong-Chan Koh;Kyung-Seok Ko;Hyoung-Chan Kim;Sang-Ho Moon;Jehyun Shin;Byoung Ohan Shim;Hanna Choi;Kyoochul Ha
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.6
    • /
    • pp.71-89
    • /
    • 2023
  • A groundwater potential map (GPM) was built for the Nakdonggang River Basin based on ten variables, including hydrogeologic unit, fault-line density, depth to groundwater, distance to surface water, lineament density, slope, stream drainage density, soil drainage, land cover, and annual rainfall. To integrate the thematic layers for GPM, the criteria were first weighted using the Analytic Hierarchical Process (AHP) and then overlaid using the Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) model. Finally, the groundwater potential was categorized into five classes (very high (VH), high (H), moderate (M), low (L), very low (VL)) and verified by examining the specific capacity of individual wells on each class. The wells in the area categorized as VH showed the highest median specific capacity (5.2 m3/day/m), while the wells with specific capacity < 1.39 m3/day/m were distributed in the areas categorized as L or VL. The accuracy of GPM generated in the work looked acceptable, although the specific capacity data were not enough to verify GPM in the studied large watershed. To create GPMs for the determination of high-yield well locations, the resolution and reliability of thematic maps should be improved. Criterion values for groundwater potential should be established when machine learning or statistical models are used in the GPM evaluation process.

Concrete Crack Detection Inside Finishing Materials Using Lock-in Thermography (위상 잠금 열화상 기법을 이용한 콘크리트 마감재 내부 균열 검출)

  • Myung-Hun Lee;Ukyong Woo;Hajin Choi;Jong-Chan Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.30-38
    • /
    • 2023
  • As the number of old buildings subject to safety inspection increases, the burden on designated institutions and management entities that are responsible for safety management is increasing. Accordingly, when selecting buildings subject to safety inspection, appropriate safety inspection standards and appropriate technology are essential. The current safety inspection standards for old buildings give low scores when it is difficult to confirm damage such as cracks in structural members due to finishing materials. This causes the evaluation results to be underestimated regardless of the actual safety status of the structure, resulting in an increase in the number of aging buildings subject to safety inspection. Accordingly, this study proposed a thermal imaging technique, a non-destructive and non-contact inspection, to detect cracks inside finishing materials. A concrete specimen was produced to observe cracks inside the finishing material using a thermal imaging camera, and thermal image data was measured by exciting a heat source on the concrete surface and cracked area. As a result of the measurement, it was confirmed that it was possible to observe cracks inside the finishing material with a width of 0.3mm, 0.5mm, and 0.7mm, but it was difficult to determine the cracks due to uneven temperature distribution due to surface peeling and peeling of the wallpaper. Accordingly, as a result of performing data analysis by deriving the amplitude and phase difference of the thermal image data, clear crack measurement was possible for 0.5mm and 0.7mm cracks. Based on this study, we hope to increase the efficiency of field application and analysis through the development of technology using big data-based deep learning in the diagnosis of internal crack damage in finishing materials.

Methodology for Developing a Predictive Model for Highway Traffic Information Using LSTM (LSTM을 활용한 고속도로 교통정보 예측 모델 개발 방법론)

  • Yoseph Lee;Hyoung-suk Jin;Yejin Kim;Sung-ho Park;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.1-18
    • /
    • 2023
  • With the recent developments in big data and deep learning, a variety of traffic information is collected widely and used for traffic operations. In particular, long short-term memory (LSTM) is used in the field of traffic information prediction with time series characteristics. Since trends, seasons, and cycles differ due to the nature of time series data input for an LSTM, a trial-and-error method based on characteristics of the data is essential for prediction models based on time series data in order to find hyperparameters. If a methodology is established to find suitable hyperparameters, it is possible to reduce the time spent in constructing high-accuracy models. Therefore, in this study, a traffic information prediction model is developed based on highway vehicle detection system (VDS) data and LSTM, and an impact assessment is conducted through changes in the LSTM evaluation indicators for each hyperparameter. In addition, a methodology for finding hyperparameters suitable for predicting highway traffic information in the transportation field is presented.

GPT-enabled SNS Sentence writing support system Based on Image Object and Meta Information (이미지 객체 및 메타정보 기반 GPT 활용 SNS 문장 작성 보조 시스템)

  • Dong-Hee Lee;Mikyeong Moon;Bong-Jun, Choi
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.3
    • /
    • pp.160-165
    • /
    • 2023
  • In this study, we propose an SNS sentence writing assistance system that utilizes YOLO and GPT to assist users in writing texts with images, such as SNS. We utilize the YOLO model to extract objects from images inserted during writing, and also extract meta-information such as GPS information and creation time information, and use them as prompt values for GPT. To use the YOLO model, we trained it on form image data, and the mAP score of the model is about 0.25 on average. GPT was trained on 1,000 blog text data with the topic of 'restaurant reviews', and the model trained in this study was used to generate sentences with two types of keywords extracted from the images. A survey was conducted to evaluate the practicality of the generated sentences, and a closed-ended survey was conducted to clearly analyze the survey results. There were three evaluation items for the questionnaire by providing the inserted image and keyword sentences. The results showed that the keywords in the images generated meaningful sentences. Through this study, we found that the accuracy of image-based sentence generation depends on the relationship between image keywords and GPT learning contents.

Automatic Detection of Type II Solar Radio Burst by Using 1-D Convolution Neutral Network

  • Kyung-Suk Cho;Junyoung Kim;Rok-Soon Kim;Eunsu Park;Yuki Kubo;Kazumasa Iwai
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.213-224
    • /
    • 2023
  • Type II solar radio bursts show frequency drifts from high to low over time. They have been known as a signature of coronal shock associated with Coronal Mass Ejections (CMEs) and/or flares, which cause an abrupt change in the space environment near the Earth (space weather). Therefore, early detection of type II bursts is important for forecasting of space weather. In this study, we develop a deep-learning (DL) model for the automatic detection of type II bursts. For this purpose, we adopted a 1-D Convolution Neutral Network (CNN) as it is well-suited for processing spatiotemporal information within the applied data set. We utilized a total of 286 radio burst spectrum images obtained by Hiraiso Radio Spectrograph (HiRAS) from 1991 and 2012, along with 231 spectrum images without the bursts from 2009 to 2015, to recognizes type II bursts. The burst types were labeled manually according to their spectra features in an answer table. Subsequently, we applied the 1-D CNN technique to the spectrum images using two filter windows with different size along time axis. To develop the DL model, we randomly selected 412 spectrum images (80%) for training and validation. The train history shows that both train and validation losses drop rapidly, while train and validation accuracies increased within approximately 100 epoches. For evaluation of the model's performance, we used 105 test images (20%) and employed a contingence table. It is found that false alarm ratio (FAR) and critical success index (CSI) were 0.14 and 0.83, respectively. Furthermore, we confirmed above result by adopting five-fold cross-validation method, in which we re-sampled five groups randomly. The estimated mean FAR and CSI of the five groups were 0.05 and 0.87, respectively. For experimental purposes, we applied our proposed model to 85 HiRAS type II radio bursts listed in the NGDC catalogue from 2009 to 2016 and 184 quiet (no bursts) spectrum images before and after the type II bursts. As a result, our model successfully detected 79 events (93%) of type II events. This results demonstrates, for the first time, that the 1-D CNN algorithm is useful for detecting type II bursts.