• Title/Summary/Keyword: learning

Search Result 35,324, Processing Time 0.059 seconds

Effects of the Deer Antler Extract on Scopolamine-induced Memory Impairment and Its Related Enzyme Activities (녹용 추출물이 치매 동물모델의 기억력 개선과 관련효소 활성에 미치는 효과)

  • Lee, Mi-Ra;Sun, Bai-Shen;Gu, Li-Juan;Wang, Chun-Yan;Fang, Zhe-Ming;Wang, Zhen;Mo, Eun-Kyoung;Ly, Sun-Young;Sung, Chang-Keun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.4
    • /
    • pp.409-414
    • /
    • 2009
  • The aim of this study was to investigate the ameliorating effects of deer antler extract on the learning and memory impairments induced by the administration of scopolamine (2 mg/kg, i.p.) in rats. Tacrine was used as a positive control agent for evaluating the cognition enhancing activity of deer antler extract in scopolamine-induced amnesia models. The results showed that the deer antler extract-treated group (200 mg/kg, p.o.) and the tacrine-treated group (10 mg/kg, p.o.) significantly ameliorated scopolamine-induced amnesia based on the Morris water maze test. Although there was no statistical significance of brain ACh contents among the experimental groups, the brain ACh contents of the deer antler extract-treated group was slightly higher than that of the scopolamine-treated group. The inhibitory effect of deer antler extract on the acetylcholinesterase activity in the brain was significantly lower than that of scopolamine-treated group. The tacrine- and the deer antler-treated groups reduced the MAO-B activity compared to the scopolamine-treated group, but not significantly. These results suggest that the deer antler extract could be an effective agent for the prevention of the cognitive impairment induced by cholinergic dysfunction.

Elementary School Teachers' and Company Teachers' Recognitions of the Informal Science Education Activity: 'Korea Junior Engineering Achievement' Case (비정규 과학교육 활동에 대한 초등 현직 교사와 기업 교사의 인식: '주니어 공학기술 교실' 사례를 중심으로)

  • Choi Jaehyeok;Yoon Hye-Gyoung
    • Journal of Korean Elementary Science Education
    • /
    • v.24 no.4
    • /
    • pp.391-398
    • /
    • 2005
  • Recent studies say that informal learning is influential to students as much as formal teaming. Nowadays we can see various informal teaming inside and outside of the country. In 2004, it was the first attempt in Korea that engineer had gone to the elementary school fur activity that included scientific experiment and engineering work with students. National Academy of Engineering of Korea (NAEK) progressed activity with companies and elementary schools for students' making sense of engineer and what they are doing. To do that, NAEK had developed the network that company could support its local school's science education circumstance by engineers' visiting program. In 2004, seventeen companies including both large and small ones took part in the program called' Korea Junior Engineering Achievement (KJEA)'. In this program, engineers played the role of teacher (we call them company teacher), elementary school teachers played the role of organizing classes as a mediator. Elementary school teachers and company teachers' recognition is very important to make students' activity meaningful. The aim of this study was to give implication for informal science education activity for which engineers visit their local school. We got the result by survey and interview of company teachers and elementary school teachers. This study's result shows that almost company teachers and school teachers were in favor of purpose of this informal science education activity and satisfied with their participation. But some company teachers were not satisfied with worksheets, materials provided and relationship between school and company). Elementary school teachers and company teachers, both of them believed students' program as the key factor of success of informal science education activity. To make informal science education grow, school administrator and teacher need to have a will to utilize the activities more actively.

  • PDF

A Study on the Development of a Competency-Based Intervention Course Curriculum of the Korean Academy of Sensory Integration (대한감각통합치료학회 역량기반 중재과정 교육커리큘럼 개발연구)

  • Namkung, Young;Kim, Kyeong-Mi;Kim, Misun;Lee, Jiyoung
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.17 no.3
    • /
    • pp.26-45
    • /
    • 2019
  • Objective : The purpose of this study is to develop educational goals, training content, and training methods for the intervention course of the Korean Academy of Sensory Integration (KASI) and to conduct competency-based intervention courses based on the competency model for sensory integration intervention. Methods : This study was conducted on work therapists who participated in the 2019 intervention course of KASI. In the first phase, educational needs were analyzed to set goals for the interventional course. In the second phase, a meeting of researchers drafted the intervention course education program and the methods of education, and the intervention course was conducted. In the third phase, the changes in educational satisfaction and performance level pre- and post-intervention course for each competency index were investigated. Results : The educational goals of "learning and applying the clinical reasoning process of sensory integration intervention" and "intervention by applying the principle of sensory integration intervention" were set after reflecting on the results of the analysis of the educational requirements. The length of the competency-based intervention course was 42 hours. The average education satisfaction level of participants in the arbitration process was 4.48±0.73, and the average education satisfaction level of the supervisor was 3.92±0.71. In both groups, the most satisfying curriculums were the data-driven decision-making process and the intervention goal-setting lecture. But the satisfaction level of was the lowest. Before and after the intervention course, there were significant changes in the performance of the two behavioral indicators of the analytic skills in the expertise competency cluster of the competency model. Conclusion : This study is meaningful in that it conducted a survey of educational needs, the development and implementation of an educational curriculum, and an education satisfaction survey through systematic courses necessary for education development.

An Analysis of Middle school Technology Teachers' Stage of Concerns about Maker Education By Concerns-Based Adoption Model (관심기반수용모형(CBAM)에 의한 중학교 기술교사의 메이커 교육 관심도 분석)

  • Kang, Sang-Hyun;Kim, Jinsoo
    • 대한공업교육학회지
    • /
    • v.44 no.2
    • /
    • pp.104-122
    • /
    • 2019
  • In the era of the fourth industrial revolution, maker education is drawing attention as a method of student-led education. At a time when interest in maker education is also growing in technology education, figuring out what stage of concern(SoC) a middle school technology teacher is critical to effective implementation. This study analyzed SoC in maker education by layer sampling among 400 middle school technology teachers using Concerns-based adoption model. SoC was then obtained by measuring the origin using the SoCQ and then presenting it as a SOCQ profile. Gender, training experience with two lower variables were analyzed using t verification, working cities, teaching experience with more than three lower variables were analyzed using one-way ANOVA. Studies showed that SoC in maker education of middle school technology teachers showed the most similar characteristics to that of non-users. The difference in concern depending on gender was that male teachers were more concerned in maker education than female teachers. The difference in concern depending on the working city was that teachers working in the township were more concerned in the maker education than teachers working in the large city, and the difference in concern depending on the teaching career was higher among teachers with middle experience than those with low and high experience. There was also a higher stage of concern in maker education than in teachers without training experience. Therefore, it is necessary to provide middle school technology teachers with an introduction to the maker education and various information, teaching, learning and evaluation data to enhance overall concern and to support the use and evaluation of the maker education in the classroom by providing various teacher training and consulting on the maker education in the future. Further, through further study, we should conduct study that analyzes both Stage of Concern, Level of Use and Innovation Configuration, to put in the effort for effective settlement of maker education.

A Methodology for Automatic Multi-Categorization of Single-Categorized Documents (단일 카테고리 문서의 다중 카테고리 자동확장 방법론)

  • Hong, Jin-Sung;Kim, Namgyu;Lee, Sangwon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.77-92
    • /
    • 2014
  • Recently, numerous documents including unstructured data and text have been created due to the rapid increase in the usage of social media and the Internet. Each document is usually provided with a specific category for the convenience of the users. In the past, the categorization was performed manually. However, in the case of manual categorization, not only can the accuracy of the categorization be not guaranteed but the categorization also requires a large amount of time and huge costs. Many studies have been conducted towards the automatic creation of categories to solve the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorizing complex documents with multiple topics because the methods work by assuming that one document can be categorized into one category only. In order to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, they are also limited in that their learning process involves training using a multi-categorized document set. These methods therefore cannot be applied to multi-categorization of most documents unless multi-categorized training sets are provided. To overcome the limitation of the requirement of a multi-categorized training set by traditional multi-categorization algorithms, we propose a new methodology that can extend a category of a single-categorized document to multiple categorizes by analyzing relationships among categories, topics, and documents. First, we attempt to find the relationship between documents and topics by using the result of topic analysis for single-categorized documents. Second, we construct a correspondence table between topics and categories by investigating the relationship between them. Finally, we calculate the matching scores for each document to multiple categories. The results imply that a document can be classified into a certain category if and only if the matching score is higher than the predefined threshold. For example, we can classify a certain document into three categories that have larger matching scores than the predefined threshold. The main contribution of our study is that our methodology can improve the applicability of traditional multi-category classifiers by generating multi-categorized documents from single-categorized documents. Additionally, we propose a module for verifying the accuracy of the proposed methodology. For performance evaluation, we performed intensive experiments with news articles. News articles are clearly categorized based on the theme, whereas the use of vulgar language and slang is smaller than other usual text document. We collected news articles from July 2012 to June 2013. The articles exhibit large variations in terms of the number of types of categories. This is because readers have different levels of interest in each category. Additionally, the result is also attributed to the differences in the frequency of the events in each category. In order to minimize the distortion of the result from the number of articles in different categories, we extracted 3,000 articles equally from each of the eight categories. Therefore, the total number of articles used in our experiments was 24,000. The eight categories were "IT Science," "Economy," "Society," "Life and Culture," "World," "Sports," "Entertainment," and "Politics." By using the news articles that we collected, we calculated the document/category correspondence scores by utilizing topic/category and document/topics correspondence scores. The document/category correspondence score can be said to indicate the degree of correspondence of each document to a certain category. As a result, we could present two additional categories for each of the 23,089 documents. Precision, recall, and F-score were revealed to be 0.605, 0.629, and 0.617 respectively when only the top 1 predicted category was evaluated, whereas they were revealed to be 0.838, 0.290, and 0.431 when the top 1 - 3 predicted categories were considered. It was very interesting to find a large variation between the scores of the eight categories on precision, recall, and F-score.

Analysis of Urban Heat Island (UHI) Alleviating Effect of Urban Parks and Green Space in Seoul Using Deep Neural Network (DNN) Model (심층신경망 모형을 이용한 서울시 도시공원 및 녹지공간의 열섬저감효과 분석)

  • Kim, Byeong-chan;Kang, Jae-woo;Park, Chan;Kim, Hyun-jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.4
    • /
    • pp.19-28
    • /
    • 2020
  • The Urban Heat Island (UHI) Effect has intensified due to urbanization and heat management at the urban level is treated as an important issue. Green space improvement projects and environmental policies are being implemented as a way to alleviate Urban Heat Islands. Several studies have been conducted to analyze the correlation between urban green areas and heat with linear regression models. However, linear regression models have limitations explaining the correlation between heat and the multitude of variables as heat is a result of a combination of non-linear factors. This study evaluated the Heat Island alleviating effects in Seoul during the summer by using a deep neural network model methodology, which has strengths in areas where it is difficult to analyze data with existing statistical analysis methods due to variable factors and a large amount of data. Wide-area data was acquired using Landsat 8. Seoul was divided into a grid (30m × 30m) and the heat island reduction variables were enter in each grid space to create a data structure that is needed for the construction of a deep neural network using ArcGIS 10.7 and Python3.7 with Keras. This deep neural network was used to analyze the correlation between land surface temperature and the variables. We confirmed that the deep neural network model has high explanatory accuracy. It was found that the cooling effect by NDVI was the greatest, and cooling effects due to the park size and green space proximity were also shown. Previous studies showed that the cooling effects related to park size was 2℃-3℃, and the proximity effect was found to lower the temperature 0.3℃-2.3℃. There is a possibility of overestimation of the results of previous studies. The results of this study can provide objective information for the justification and more effective formation of new urban green areas to alleviate the Urban Heat Island phenomenon in the future.

Interpretation of Cultural Landscape Elements at the Management of Udam Chae Deug-gi's Gyeongcheondae(擎天臺) (우담 채득기의 경천대 경영에 나타난 문화경관 요소의 해석)

  • Lee, Yoo-Jin;Kim, Soo-Jin;Sim, Woo-Kyung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.28 no.4
    • /
    • pp.127-143
    • /
    • 2010
  • This research was made on the interpretation of cultural landscape elements which is shown at nature management around Gyeongcheondae managed by Udam Chae Deug-gi, scholar in Joseon dynasty. Naming the nature management and natural features not only reflected on the formation toward the view of nature by the contemporary intellectuals, but influenced on the fashion of garden culture. Udam Chae Deug-gi dwelt in the riverside of Sangju, Kyungbuk as the characteristics of hermitage and managed landscape and had a willing to live a life free from worldly cares. The Gyeongchundae 28 landscapes, which was managed by himself, represent that natural features are named on the basis of neo-confucian principle and loyalty and he imposed symbolic meaning on landscape management by practically translating his aesthetic consciousness to reality; the name of detailed landscape is largely 'loyalty to Ming dynasty and to king's order and loyalty', 'Taoism' and 'Management will of landscape' by the life of metaphor and enjoyment, and symbolizes 'Searching for learning'. In addition, by selecting 10 out of 28 landscapes around Gyeongcheondae, lyrically describing the landscape by representing the change of time, season and the climate which is the scenic term of Great 8 Sosang views in fashion at that time focusing on the place he strolled or enjoyed watching himself; it can be seen that such moves are related with the landscape management in fashion in order to understand microcosmic providence with the change of natural environment. Therefore, Udam Chaedeug-gi is regarded as the neo-confucian view of nature for which any value scholars in Joseon dynasty have to own - 'loyalty' and 'integrity' - he usually emphasized himself to name the natural features and overcome the darkness of society comparing the landscape management around Gyeongchundae he lived a life free from worldly cares to the situation of Joseon dynasty when a transition times between Ming and Chung comes from China.

The Recognition Characteristics of Science Gifted Students on the Earth System based on their Thinking Style (과학 영재 학생들의 사고양식에 따른 지구시스템에 대한 인지 특성)

  • Lee, Hyonyong;Kim, Seung-Hwan
    • Journal of Science Education
    • /
    • v.33 no.1
    • /
    • pp.12-30
    • /
    • 2009
  • The purpose of this study was to analyze recognition characteristics of science gifted students on the earth system based on their thinking style. The subjects were 24 science gifted students at the Science Institute for Gifted Students of a university located in metropolitan city in Korea. The students' thinking styles were firstly examined on the basis of the Sternberg's theory of mental self-government. And then, the students were divided into two groups: Type I group(legislative, judicial, global, liberal) and Type II group(executive, local, conservative) based on Sternberg's theory. Data was collected from three different type of questionnaires(A, B, C types), interview, word association method, drawing analyses, concept map, hidden dimension inventory, and in-depth interviews. The findings of analysis indicated that their thinking styles were characterized by 'Legislative', 'Executive', 'Anarchic', 'Global', 'External', 'Liberal' styles. Their preference were conducting new projects and using creative problem solving processes. The results of students' recognition characteristics on earth system were as follows: First, though the two groups' quantitative value on 'System Understanding' was very similar, there were considerable distinctions in details. Second, 'Understanding the Relationship in the System' was closely connected to thinking styles. Type I group was more advantageous with multiple, dynamic, and recursive approach. Third, in the relation to 'System Generalization' both of the groups had similar simple interpretational ability of the system, but Type I group was better on generalization when 'hidden dimension inventory' factor was added. On the system prediction factor, however, students' ability was weak regardless of the type. Consequently, more specific development strategies on various objects are needed for the development and application of the system learning program. Furthermore, it is expected that this study could be practically and effectively used on various fields related to system recognition.

  • PDF

The Understanding of Elementary Pre-Service Teachers' on Legal Units (초등 예비교사들의 법정계량단위에 대한 이해)

  • Kim, Sung-Kyu;Kong, Young-Tae
    • Journal of Science Education
    • /
    • v.33 no.1
    • /
    • pp.111-121
    • /
    • 2009
  • The purpose of this research is to survey elementary pre-service teachers' in understand the legal Units, focusing on seven basic unit such a 'm', 'm2', 'L', 'kg', 'K', 'cd', 's'. This study specifically investigates whether the students understand the legal units. The subjects were 1096 students from the University of Education in Jinju, Gyeongnam. Data was collected through a questionnaire which was designed by this research and checked by authority, and the frequency and percentage of responses to each question were obtained and analysed. The survey was the legal units on interesting, using the experience of confusing and understanding of elementary pre-service teachers. The Korea Government is regulating using traditional measures such as 'pyeong' or 'don' in commercial transactions change to adopt the metric system for as a subsidiary the first of July, 2007. The interesting of the legal units dose not exceed a positive answer to the question 52.1%. Their were answered that the experience of the confused of 60.1% in the life. How to do efforts for the settle down of the legal units that answered broadcasting>in class>a campaign>study and training by an academic year in oder. Findings show regardless of academic year, gender and from the department of liberal arts or the science department all the students knew very well that 'm' '$m^2$', 'L', 'kg' are included in the legal units, compared to the others low percentage of 'K', 'cd' and 's' the legal units. In case of time(s), women has correct answered 2.7 times than man. In case of academic year, except for the third-year students was not to exceed 50%. In case of from the department of liberal arts or the science department contrary to one's expectations increase of 50% or more correct answer while half the students scored in science. The elementary pre-service teachers are seems to thinking separate the legal units with their in university life. Also elementary pre-service teachers are the lack of interest on society. Their should be for settle down of the legal units through learning to class in university, newspapers, strengthen publicity activities of broadcast media's further more by maintenance efforts of the government.

  • PDF

A Study on the Effect of Using Sentiment Lexicon in Opinion Classification (오피니언 분류의 감성사전 활용효과에 대한 연구)

  • Kim, Seungwoo;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.133-148
    • /
    • 2014
  • Recently, with the advent of various information channels, the number of has continued to grow. The main cause of this phenomenon can be found in the significant increase of unstructured data, as the use of smart devices enables users to create data in the form of text, audio, images, and video. In various types of unstructured data, the user's opinion and a variety of information is clearly expressed in text data such as news, reports, papers, and various articles. Thus, active attempts have been made to create new value by analyzing these texts. The representative techniques used in text analysis are text mining and opinion mining. These share certain important characteristics; for example, they not only use text documents as input data, but also use many natural language processing techniques such as filtering and parsing. Therefore, opinion mining is usually recognized as a sub-concept of text mining, or, in many cases, the two terms are used interchangeably in the literature. Suppose that the purpose of a certain classification analysis is to predict a positive or negative opinion contained in some documents. If we focus on the classification process, the analysis can be regarded as a traditional text mining case. However, if we observe that the target of the analysis is a positive or negative opinion, the analysis can be regarded as a typical example of opinion mining. In other words, two methods (i.e., text mining and opinion mining) are available for opinion classification. Thus, in order to distinguish between the two, a precise definition of each method is needed. In this paper, we found that it is very difficult to distinguish between the two methods clearly with respect to the purpose of analysis and the type of results. We conclude that the most definitive criterion to distinguish text mining from opinion mining is whether an analysis utilizes any kind of sentiment lexicon. We first established two prediction models, one based on opinion mining and the other on text mining. Next, we compared the main processes used by the two prediction models. Finally, we compared their prediction accuracy. We then analyzed 2,000 movie reviews. The results revealed that the prediction model based on opinion mining showed higher average prediction accuracy compared to the text mining model. Moreover, in the lift chart generated by the opinion mining based model, the prediction accuracy for the documents with strong certainty was higher than that for the documents with weak certainty. Most of all, opinion mining has a meaningful advantage in that it can reduce learning time dramatically, because a sentiment lexicon generated once can be reused in a similar application domain. Additionally, the classification results can be clearly explained by using a sentiment lexicon. This study has two limitations. First, the results of the experiments cannot be generalized, mainly because the experiment is limited to a small number of movie reviews. Additionally, various parameters in the parsing and filtering steps of the text mining may have affected the accuracy of the prediction models. However, this research contributes a performance and comparison of text mining analysis and opinion mining analysis for opinion classification. In future research, a more precise evaluation of the two methods should be made through intensive experiments.