• 제목/요약/키워드: lean simulation

검색결과 43건 처리시간 0.023초

고주파 연소불안정 예측을 위한 해석기술 개발 사례 (Introduction of Numerical Simulation Techniques for High-Frequency Combustion Instabilities)

  • 김성구;조미옥;한상훈;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.68-77
    • /
    • 2017
  • 고주파 연소불안정은 비정상 화염의 열방출율 섭동과 연소실 내부에서 공진되는 음향파의 상호 결합으로 발생하는 열음향 문제로, 다양한 해석적 접근방법이 존재한다. 본 논문에서는 주파수 영역에서 선형음향 가정과 시간지연 이론을 이용한 3차원 FEM Helmholtz solver의 개발 사례를 소개하였으며, 가변길이 희박 예혼합 연소기의 자발 연소불안정 예측과 수동제어기구(배플, 음향공진기)의 설계분석 결과를 제시하였다. 또한 시간 영역에서 시간지연 이론을 이용한 압축성 유동 해석코드를 통해, 고진폭 압력섭동에 의해 야기되는 비선형 음향 특성과 한계사이클 현상을 분석하였다.

  • PDF

다단 연소 버너의 보일러 연소실에서의 연소 특성 (Combustion Characteristics of a Staged Burner for a Boiler)

  • 안준;김종진;강새별
    • 대한기계학회논문집B
    • /
    • 제33권10호
    • /
    • pp.767-772
    • /
    • 2009
  • The demand for a boiler with low NOx burner is increasing with the recent strict NOx regulation. Staged burner is a common low NOx burner to suppress the formation of thermal NOx by yielding local fuel rich and lean condition. The staged burner gives fire with bigger frontal area and length compared with a conventional burner, which changes heat transfer characteristics in the combustion chamber. The heat transfer and exhaust gas characteristics have been studied in the present study for a 0.5 t/h class furnace type boiler adopting the staged burner. A numerical simulation has been conducted to clarify the detailed physics inside the combustion chamber.

Basis Mode of Turbulent Flame in a Swirl-Stabilized Gas Turbine using LES and POD

  • Sung, Hong-Gye;Yang, Vigor
    • 한국연소학회지
    • /
    • 제6권2호
    • /
    • pp.29-35
    • /
    • 2001
  • Unsteady numerical study has been conducted on combustion dynamics of a lean-premixed swirl-stabilized gas turbine swirl injector. A three-dimensional computation method utilizing the message passing interface (MPI) parallel architecture, large eddy simulation(LES), and proper orthogonal decomposition (POD) technique was applied. The unsteady turbulent flame dynamics are simulated so that the turbulent flame structure can be characterized in detail. It was observed that some fuel lumps escape from the primary combustion zone, and move downstream and consequently produce hot spots. Those flame dynamics coincides with experimental data. In addition, basis modes of the unsteady turbulent flame are characterized using proper orthogonal decomposition (POD) analysis. The flame structure based on odd basis modes is apparently larger than that of even ones. The flame structure can be extracted from the summation of the basis modes and eigenvectors at any moment.

  • PDF

헬름홀츠 공진기에 따른 버너내의 음향장에 관한 수치해석 (Numerical Simulation of the Acoustic Field in a Burner with Helmholtz Resonators)

  • 홍정구;조한창;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.86-91
    • /
    • 2007
  • A study was performed to understand self-excited pressure fluctuations in the lean premixed flames and to evaluate the effect of Helmholtz resonator on the pressure fluctuations. As low-frequency pressure fluctuations have been reported to cause fatal damage to the combustor and the entire system, Helmholtz-type resonators, which reduce the damage by low-frequency pressure fluctuation in the combustor, are attached to the channel of unburned mixture flow. It is found that the range of low-frequency pressure fluctuations of flame mode 2 is narrowed by the attachment of Helmholtz resonators. From this result, if Helmholtz-type resonators are applied to actual gas turbine combustor, it is confirmed that Helmholtz resonators attached on the fuel discharge hole are also effective for narrowing the range of flame mode 2

  • PDF

PID 및 적응학습 제어기법을 이용한 자동화 엔진의 공기-연료비 제어시스템 연구 (PID and adaptive learning control for engine air-fuel control system)

  • 이덕규;최돈;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.658-662
    • /
    • 1990
  • In the air-fuel control of automotive engine to improve its efficiency, fuel economy and less emissions, conventional control methods using $O_{2}$ sensor or the lean air-fuel ratio sensor provide only open control in rich conditions. Control with a wide range air-fuel sensor makes it possible to employ closed loop control for all engine conditions including rich combustion. With a wide range A/F sensor and A/F transfer functions, a PID control system is constructed which employs an learning scheme. A/F controller is designed which enables to improve the ability of its compensation for sensors and actuators, and its control operation is evaluated by computer simulation.

  • PDF

다단 연소 버너의 보일러 연소실에서의 연소 특성 (Combustion Characteristics of a Staged Burner for a Boiler)

  • 안준;김종진;강새별
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.555-558
    • /
    • 2008
  • The demand for a boiler with low NOx burner is increasing with the recent strict NOx regulation. Staged burner is a common low NOx burner to suppress the formation of thermal NOx by yielding local fuel rich and fuel lean condition. The staged burner gives fire with bigger frontal area and length compared with a conventional burner, which changes heat transfer characteristics in the combustion chamber. The heat transfer and exhaust gas characteristics has been studied in the present study for a 0.5 t/h class furnace type boiler adopting the staged burner. A numerical simulation has been conducted to clarify the detailed physics inside the combustion chamber.

  • PDF

FIRE Code를 사용한 정적연소기의 메탄-공기 균질 혼합기 연소특성 연구 (A Study on Combustion Characteristics of Methane-air Homogeneous Mixture in a Constant Volume combustion Chamber by FIRE Code)

  • 이석영;허강열
    • 한국연소학회지
    • /
    • 제11권2호
    • /
    • pp.28-36
    • /
    • 2006
  • A constant volume combustion chamber was used to investigate the combustion characteristics. of homogeneous charge of methane-air mixture under various initial pressure, equivalence ratio and ignition times. The constant volume combustion chamber(CVCC) mostly has been studied by the experiments of visualization until now. So it is needed the numerical analysis of fluid and combustion characteristics in chamber by the more detail simulation. In this paper, the numerical analysis is tried to approach basically the homogeneous charge combustion phenomena under the various conditions, and the combustion phenomena in chamber is numerically analyzed by the commercial FIRE code. As a results, the combustion phenomena which were mean temperature, OH radical and reaction rate in chamber were investigated and it showed that the smallest flame growth occurs for the lean state and the increase of initial charged pressure condition due to the reduced OH radical.

  • PDF

신경회로망을 이용한 PID 제어기 자동동조 (Auto-tuning of PID Controller using Neural Network)

  • 오훈;최석호;윤양웅
    • 조명전기설비학회논문지
    • /
    • 제12권3호
    • /
    • pp.7-13
    • /
    • 1998
  • 본 논문에서는 시스템의 동특성이 변화 가능한 구간에서 임의의 생플올 추출하여 신경회로망을 학습시킴으로써 시스템 동특성에 따라 Pill 제어기가 자동동조하는 방법을 제시하였다. 신경회로망을 학습시키기 위해 역전파 학습 알고리즘올 사용하였고, 교사치로는 규칙기반에 의해서 얻어진 매개변수를 이용하였다. 부하 변화시 시스템의 동특성에 맞는 Pill 제어기가 자동동조됨을 시뮬레이션에 의해 확인하였다.

  • PDF

발전용 저 NOx 가스터빈의 연소모드 변환시기의 연소특성 전산해석 (Numerical Analysis of Combustion Characteristics during Combustion Mode Change of a Low NOx Utility Gas Turbine)

  • 정재모;정재화;박정규
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.127-134
    • /
    • 2004
  • Three-dimensional numerical investigations are carried out to understand the combustion characteristics inside a DLN(dry low NOx) utility gas turbine combustor during the combustion mode change period by applying transient fuel flow rates in fuel supply system as numerical boundary conditions. The numerical solution domain comprises the complex combustor liner including cooling air holes, three types of fuel nozzles, a swirl vane, and a venturi. Detailed three-dimensional flow and temperature fields before and after combustion mode changeover have been analyzed. The results may be useful for further studies on the unfavorable phenomena, such as flashback or thermal damage of combustor parts when the combustion mode changes.

5kW 급 MCFC 발전시스템 촉매연소기의 유동 및 연소 특성에 대한 수치적 연구 (A Numerical Study on the Internal Flow and Combustion Characteristics of the Catalytic Combustor for the 5kW MCFC Power system)

  • 김종민;이연화;김만영;김형곤;홍동진;조주형;김한석;안국영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3049-3052
    • /
    • 2008
  • MCFC(molten carbonate fuel cell) power generation system is prime candidate for the utilization of fossil based fuels to generate ultra clean power with a high efficiency. In the MCFC power plant system, a combustor performs a role to supply high temperature mixture gases for cathode and heat for reformer by using the stack off-gas of the anode which includes a high concentration of $H_2O$ and $CO_2$. Since a combustor needs to be operated in a very lean condition and to avoid excessive local heating, catalytic combustor is usually used. The catalytic combustion is accomplished by the catalytic chemical reaction between fuel and oxidizer at catalyst surface, different from conventional combustion. In this study, a mathematical model for the prediction of internal flow and catalytic combustion characteristics in the catalytic combustor adopted in the MCFC power plant system is suggested by using the numerical methods. The numerical simulation models are then implemented into the commercial CFD code. After verifying result by comparing with the experimental data and calibrated kinetic parameters of catalytic combustion reaction, a numerical simulation is performed to investigate the variation of flow and combustion characteristics by changing such various parameters as inlet configuration and inlet temperature. The result show that the catalytic combustion can be effectively improved for most of the case by using the perforated plate and subsequent stable catalytic combustion is expected.

  • PDF