• Title/Summary/Keyword: leaf development

Search Result 1,871, Processing Time 0.046 seconds

The embryological studies on the interspecific hybrid of ginseng plant (Panax ginseng x P. Quiuquefolium) with special references to the seed abortion (인삼의 종간잡종 Panax ginseng x P Quinquefoilium의 발생학적 연구 특히 결실불능의 원인에 관하여)

  • Jong-Kyu Hwang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.5 no.1
    • /
    • pp.69-86
    • /
    • 1969
  • On the growing of the interspecific hybrid ginseng plant, the phenomena of hybrid vigoures are observed in the root, stem, and leaf, but it can not produce seeds favorably since the ovary is abortive in most cases in interspecific hybrid plants. The present investigation was undertaken in an attempt to elucidate the embryological dses of the seed failure in the interspecific hybrid of ginseng (Panax Ginseng ${\times}$ P. Quinque folium). And the results obtained may be summarized as follows. 1). The vegetative growth of the interspecific hybrid ginseng plant is normal or rather vigorous, but the generative growth is extremely obstructed. 2). Even though the generative growth is interrupted the normal development of ovary tissue of flower can be shown until the stage prior to meiosis. 3). The division of the male gameto-genetic cell and the female gameto-genetic cell are exceedingly irregular and some of them are constricted prior to meiosis. 4). At meiosis in the microspore mother cell of the interspecific hybrid, abnormal division is observed in that the univalent chromosome and chromosome bridge occure. And in most cases, metaphasic configuration is principally presented as 23 II+2I, though rarely 22II+4I is also found. 5). Through the process of microspore and pollen formation of F1, the various developmental phases occur even in an anther loclus. 6). Macro, micro and empty pollen grains occur and the functional pollen is very rare. 7). After the megaspore mother cell stage, the rate of ovule development is, on the whole, delayed but the ovary wall enlargement is nearly normal. 8). Degenerating phenomena of ovules occur from the megaspore mother cell stage to 8-nucleate embryo sac stage, and their beginning time of constricting shape is variously different. 9). The megaspore arrangement in the parent is principally of the linear type, though rarely the intermediate type is also observed, whereas various types, viz, linear, intermediate, Tshape, and I shape can be observed in hybrid. 10). After meiosis, three or five megaspore are some times counted. 11). Charazal end megaspore is generally functional in the parents, whereas, in F1, very rarely one of the center megaspores (the second of the third megaspore) grows as an embryo sac mother cell. 12). In accordance with the extent of irregularity or abnormality in meiosis, division of embryo sac nuclei and embryo sac formation cause more nucellus tissue to remain within th, embryo sac. 13). Even if one reached the stage of embryo sac formation, the embryo sac nuclei are always precarious and they can not be disposed to theil proper, respective position. 14). Within the embryo sac, which is lacking the endospermcell, the 4-celled proembryo, linear arrangement, is observed. 15). Through the above respects, the cause of sterile or seed failure of interspecific hybrid would be presumably as follows, By interspecific crossing gene reassortments takes place and the gene system influences the metabolism by the interference of certain enzyme as media. In the F1 plant, the quantity and quality of chemicals produced by the enzyme system and reaction system are entirely different from the case of the parents. Generally, in order to grow, form, and develop naw parts it is necessary to change the materials and energy with reasonable balance, whereas in the F1 plant the metabolic process becomes abnormal or irregular because of the breakdown of the balancing. Thus the changing of the gene-reaction system causes the alteration of the environmental condition of the gameto-genetic cells in the anther and ovule; the produced chemicals cause changes of oxidatio-reduction potential, PH value, protein denaturation and the polarity, etc. Then, the abnormal tissue growing in the ovule and emdryo sac, inhibition of normal development and storage of some chemicals, especially inhibitor, finally lead to sterility or seed failure. Inconclusion, we may presume that the first cause of sterile or seed abortion in interspecific hybrids is the gene reassortment, and the second is the irregularity of the metabolic system, storage of chemicals, especially inhibitor, the growth of abnormal tissue and the change of the polarity etc, and they finally lead to sexual defect, sterility and seed failure.

  • PDF

A New Medium Maturing and High Quality Rice Variety with Lodging and Disease Resistance, 'Jinbo' (중생 고품질 내도복 내병성 벼 품종 '진보')

  • Kim, Jeong-Il;Park, No-Bong;Lee, Ji-Yoon;Park, Dong-Soo;Yeo, Un-Sang;Chang, Jae-Ki;Kang, Jung-Hun;Oh, Byeong-Geun;Kwon, Oh-Deog;Kwak, Do-Yeon;Lee, Jong-Hee;Yi, Gi-Hwan;Kim, Chun-Song;Song, You-Cheon;Cho, Jun-Hyun;Nam, Min-Hee;Choung, Jin-Il;Shin, Mun-Sik;Jeon, Myeong-Gi;Yang, Sae-Jun;Kang, Hang-Weon;Ahn, Jin-Gon;Kim, Jae-Kyu
    • Korean Journal of Breeding Science
    • /
    • v.43 no.3
    • /
    • pp.165-171
    • /
    • 2011
  • A new rice variety 'Jinbo' is a japonica rice (Oryza sativa L.) with good eating quality, lodging tolerance, and resistance to rice stripe virus (RSV) and bacterial blight disease (BB). It was developed by the rice breeding team of Yeongdeog Substation, National Institute of Crop Science (NICS), RDA in 2009. This variety was derived from a cross between 'Yeongdeog26' with good grain quality and wind tolerance and 'Koshihikari' with good eating quality in 1998 summer season. A promising line, YR21324-56-1-1, selected by pedigree breeding method, was designated as the name of 'Yeongdeog45' in 2005. After the local adaptability test was carried out at nine locations from 2006 to 2008, 'Yeongdeog45' was released as the name of 'Jinbo' in 2009. 'Jinbo' has short culm length as 74 cm and medium maturating growth duration. This variety is resistant to $K_1$, $K_2$, and $K_3$ races of bacterial blight and stripe virus and moderately resistant to leaf blast disease with durable resistance, and also it has tolerance to unfavorable environments such as cold and dried wind. 'Jinbo' has translucent and clear milled rice kernel without white core and white belly rice, and good eating quality as a result of panel test. The yield potential of 'Jinbo' in milled rice is about 5.65 MT/ha at ordinary fertilizer level in local adaptability test. This cultivar would be adaptable to middle plain, mid-west costal area, east-south coastal area, and south mid-mountainous area.

Utilization of Wood by-product and Development of Horticultural Growing Media (임산부산물을 이용한 원예용 혼합상토 개발)

  • Jung, Ji Young;Lim, Ki-Byung;Kim, Ji Su;Park, Han Min;Yang, Jae-Kyung
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.435-442
    • /
    • 2015
  • The main objective of this work was to identify and evaluate possible substrate alternatives or amendments to peat moss. This study involves the physical and chemical characterization and growth test of wood sawdust and wood fiber in order to evaluate their use as components of horticultural media. The carbohydrate content, C/N ratio, pH, phenolic compound, total porosity and water holding capacity were 58.9%, 425.1, 4.8, 181.8 ($mg{\cdot}g^{-1}$), 82.5% and 47.1% in wood sawdust and 41.1%, 240.8, 5.9, 29.8 ($mg{\cdot}g^{-1}$), 90.6% and 56.2% in wood fiber, respectively. Wood sawdust (K, $998.0mg{\cdot}100g^{-1}$ ; Ca, $1196.0mg{\cdot}100g^{-1}$; Mg, $105.6mg{\cdot}100g^{-1}$) and wood fiber (K, $1250.1mg{\cdot}100g^{-1}$; Ca, $1982.6mg{\cdot}100g^{-1}$; Mg, $173.1mg{\cdot}100g^{-1}$) showed adequate mineral elements properties compared to peat moss (K, $0.02mg{\cdot}100g^{-1}$; Ca, $0.57mg{\cdot}100g^{-1}$; Mg, $0.13mg{\cdot}100g^{-1}$) for their use as growing media. The mixtures of the horticultural media were prepared using different substrate as wood sawdust and wood fiber to grow Chinese cabbage (Brassica campestris L.) in a greenhouse. The seed germination, leaf area and stem height were 75%, $0.50cm^2$ and 2.8 cm in PS substrate (containing 30% peat moss, 10% perlite and 60% wood sawdust) and 95%, $0.65cm^2$ and 3.3 cm in PF substrate (containing 30% peat moss, 10% perlite and 60% wood fiber), respectively. The seed germination and stem height of the PF substrate (containing 30% peat moss, 10% perlite and 60% wood fiber) was higher than those in peat moss (control). Utilization of wood by-product can be considered as an alternative media component to substitute the widely using expensive peat moss.

Effect of Shading, Light Quality, and Chemical Elicitation on Growth and Bioactive Compound Content of Potentilla kleiniana Wight et Arnott (가락지나물의 생장과 생리활성물질 함량에 미치는 차광, 광질 및 화학적 엘리시테이션)

  • Lee, Jong-Du;Park, Jung-Ae;Park, Byung-Jun;Jeong, Cheol-Seung;Park, So-Young;Pae, Kee-Yoeup
    • Korean Journal of Plant Resources
    • /
    • v.29 no.4
    • /
    • pp.363-375
    • /
    • 2016
  • Potentilla kleiniana is a perennial herb beloning to Rosaceae family. Herein we investigated the effect of light intensity, light quality and chemical elicitor on plant growth and the accumulation of bioactive compounds in P. kleiniana. After 60 days of cultivation under different shading level [0% (200 μmol·m−2·s−1), 35% (95 μmol·m−2·s−1), 55% (65 μmol·m−2·s−1), 75% (40 μmol·m−2·s−1)] in the greenhouse, chlorophyll and carotenoid content were the highest under 35% treatment, however, plant height, leaf number and biomass were the highest under non-shading. As a result of cultivation among strong light condition as a control, florescence and three mixture light sources [red:white:blue (RWB) = 8:1:1, red:blue (RB) = 8:2, red:green:blue (RGB) = 8:1:1] as treatments in plant growth chamber (25 ± 2℃, 185 ± 3 μmol·m−2·s−1), growth, biomass, chlorophyll content low difference between total phenolic compouds and flavonoid content were higher under RWB treatment. DPPH radical elimination ability was the highest under all treatments especially florescence and RGB treatment except control. As a result of treating chemical elicitor [salicylic acid (SA), methyl jasmonate (MeJA)] concentration (0, 50, 100, 200 μM) respectively, plant height, petiole diameter and biomass were higher under non-treatment, MeJA 50 μM. It was investigated that fresh weight and dry weight under MeJA 50 μM treatment were especially a little high. Total phenolic compounds and flavonoid content of SA 50 μM treatment was the highest but DPPH radical elimination ability was significantly the highest under MeJA 200 μM (88.65%) and MeJA 50 μM (87.84%) treatment. Thus, this study suggested that we determined optimal shading and light quality in the greenhouse and plant growth chamber also confirmed bioactive compound content, antioxidant ratio increase according to different chemical elicitation concentration.

Growth Characteristics and Forage Productivity of New Forage Barley Variety, 'Miho' (청보리 신품종 '미호'의 생육특성과 수량성)

  • Oh, Young-Jin;Park, Tae-Il;Park, Hyoung-Ho;Han, Ouk-Kyu;Song, Tae-Hwa;Park, Jong-Chul;Kim, Yang-Kil;Park, Jong-Ho;Kang, Hyeon-Jung;Kang, Chon-Sik;Cheong, Young-Keun;Kim, Kyong-Ho;Kim, Bo-Kyeong;Yun, Geon-Sig;Hong, Gi-Heung;Bae, Jeong-Suk;Lee, Seong-Tae
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.4
    • /
    • pp.370-375
    • /
    • 2016
  • The purpose of development new variety 'Miho' (Hordeum vulgare L.) is a favorite with livestock feed and develop varieties resistant to disease and lodging. 'Miho' was carrying out the growth habit of group III with green and mid-wide leaf. Awn that is related to preference of livestock is a semi-smooth awn. This cultivar had 96 cm of culm length, 650 of spikes $per\;m^2$. Heading date of 'Miho' was April 27, and maturing date on May 30, which were later than cultivar 'Youngyang'. It also showed strong winter hardiness, and similar resistance to shattering and bariy yellow mosaic virus (BaYMV) compared with those of check one. The best thing among the traits of a good quality with the plant green at the latter growing period. The average forage dry matter yield in the regional yield trial was about 13.1, 12.1 MT per ha in upland and paddy field, respectively, which were 9%, 2% higher than that of the check cultivar. It's also showed 6.8% crude protein, 27.1% ADF (acid detergent fiber), and 67.5% TDN (total digestible nutrients), including higher silage quality for whole crop barley. This cultivar would be suitable for the area whose average minimum temperature was above $-8^{\circ}C$ January in Korean peninsula.

Development of an Efficient In Vitro Screening Method for Selection of Resistant Lily Cultivars Against Fusarium oxysporum f. sp. lilii (백합 구근부패병 저항성 검정을 위한 기내 간편 검정법 개발)

  • Jang, Ji-Young;Moon, Ki-Beom;Ha, Jang-Ho;Park, Ji-Sun;Kim, Mi-Jin;Jeon, Jae-Heung;Lee, Geung-Joo;Kim, Hyun-Soon
    • Horticultural Science & Technology
    • /
    • v.33 no.6
    • /
    • pp.883-890
    • /
    • 2015
  • The soilborne fungus Fusarium oxysporum f. sp. lilii (Fol) is a serious threat to all lily cultivars, especially infecting bulbs and flowers. It has become increasingly important to develop varieties resistant against the bulb rot disease. Genetic diversity of cultivars and reliable screening methods are required for this purpose. Here, an efficient in vitro screening system for evaluating resistance to Fol in 38 in vitro-grown lily plants was investigated. Various factors including culture conditions of Fol, inoculum density, appropriate plant materials, inoculation method and duration, and incubation period of plant materials after inoculation were combined to optimize the screening method. As a result, we suggest optimal conditions for an in vitro screening system for the selection of Fol-resistant lily cultivars as follows. Fol was grown on potato dextrose agar (PDA) medium for 6 days at $25^{\circ}C$ in darkness and used as working inoculation. Spore suspensions were prepared (inoculum density: $1.0{\times}10^4$ $spores{\cdot}mL^{-1}$), and then leaf segments $1.5{\times}2.0cm^2$ were inoculated by dipping for 22 hours at $25^{\circ}C$ in dark. Later, leaves were cultured on 0.6% agar plates at $25^{\circ}C$ and 50% humidity with a photoperiod of 16 hours light/8 hours dark (fluence rate of $40{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) to examine the progress of bulb rot. After 7 days, disease levels were classified into indices 1 (no symptom) to 6 (serious bulb rot). Soil inoculation of Fol carried out with resistant or susceptible lily cultivars that had been selected through in vitro screening confirmed the reproducibility of results. Therefore, the in vitro screening method established in this study is efficient and reliable for selection of lily cultivars resistant against bulb rot disease.

Development of computer program for the Growth Function in plant Growth Analysis: Effect of Seed Weight and Resources on Growth of Wild Radish (Raphanus raphanistrum) (植物의 成長과 成長解析에 對한 Computer Program 開發에 關한 硏究 - 種子의 무게, 資源이 植物의 成長에 미치는 影響)

  • Choe, Hyun Sup
    • The Korean Journal of Ecology
    • /
    • v.13 no.3
    • /
    • pp.225-236
    • /
    • 1990
  • We studied that seeds of wild radish with different size of weight can be obtained for the purpose of differentiation and growth of these seeds by total growth periods. This study is practised a view of plant eco-physiological side and dry-matter production. Through whole growth periods, we knowthat seed weight of L plots was higher than that of M and S plots. In the 33th day after day after germination, growth values of L, M and S plots were 13.93, 7.77, and 4.61 g/plant, respectively. Growth of shoot (cotyledon and leaf) area and shoot weight were shown the similar trends with individual plant dry-amtter weight. In the 33th day after germination, shoot area of L, M and S plots were 21.55, 11.81 and 8.75 $cm^3$/plant and shoot dry weight of L, M and S plots were 10.83, 6.03, 3.50 g/plant, respectively. In the early stage of growth (the 10-14th day after germination), the values of RGR of seed weight of L, M, S plots were 0.2887, 0.2807 and 0.2365 g/g/day, in the late stage of growth, those values of RGR of L, M, S plote were 0.2721, 0.1716, 0.1727 g/g/day, respectively. In the early stage of growth (the 14th day after germination), the values of NAR or L, M and S plots were 0.1513, 0.1373, and 0.1094 g/$cm^2$/day, respectively. It is thought that seed weights were influenced seriously effect in the early stage of growth. The NAR value, in the late stage of growth (the-28-33th day after germination), of L, M and S plots were not large different as 0.1086, 0.1097 and 0.112 g/$cm^2$/day, respectively. The LAR values of M and S (2.0396, 2.1520 $m^2$/g) plots, in the early stage of growth, were higher than L (1.9037 $m^2$/g) plots. In the late stage of growth, the value of LAR of L plots were nearly same as M plots, but the value of S plots were higher than that of L and M plots (0.0458 $m^2$/g). And, in the early stage of growth, the values of SLA of L, M and S plots were 2.2123, 2.2107 and 2.8448 $m^2$/g, respectively. We measured the photosynthetic rates and the respiratory rates as the physiological characteristics of wild radish. In the early stage of growth, the photosynthetic rates of L, M and S plots were 12.4, 14.4, 9.8 $\mu$mol /$m^2$/sec and 9.4, 11.4, 9.8 $\mu$mol/$m^2$ /sec in the late stage of growth, respectively. In this result, it could be informed that photosynthetic rates in the late stage of growth were lower than the early stage. In the middle stage of growth, the respiratory rates were 0.793, $\mu$mol/$m^2$/min in shoot, and 3.28 $\mu$mol/$m^2$/min in root without relation to seed weight. The growth analysis of plants was used by Hunt & Parson s computer program (1974, 1981) and its results used this program were good. Therefore, in this sense, it could be expected that the computer program used and developed largely in researches of plant growth.

  • PDF

Development of an Official Analytical Method for Determination of Aclonifen in Agricultural Products Using GC-ECD (GC-ECD를 이용한 농산물 중 제초제 aclonifen의 공정분석법 확립)

  • Ko, Ah-Young;Kim, Hee-Jung;Jang, Jin;Lee, Eun-Hyang;Joo, Yoon-Ji;Kwon, Chan-Hyeok;Son, Young-Wook;Chang, Moon-Ik;Rhee, Gyu-Seek
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.388-394
    • /
    • 2014
  • BACKGROUND: Aclonifen is used as a systemic and selective herbicide to control a wide spectrum broad-leaf weeds by inhibition carotenoid biosynthesis, and then its MRLs(Maximum Residue Limits) will be determined in onion and garlic. In this study, a new official method was developed for aclonifen determination in agricultural products to routinely inspect the violation of MRL as well as to evaluate the terminal residue level. METHODS AND RESULTS: Aclonifen was extracted from crop samples with acetone and the extract was partitioned with dichloromethane and then purified by silica solid phase extraction(SPE) cartridge. The purified samples were detected GC using an ECD detector. Limits of detection(LOD) was 0.001 mg/kg and quantification(LOQ) was 0.005 mg/kg, respectively. For validation purposes, recovery studies were carried out at three different concentration levels (LOQ, $10{\times}LOQ$, $50{\times}LOQ$, n=5). The recoveries were ranged from 74.3 to 95.0% with relative standard deviations(RSDs) of less than 8%. All values were consistent with the criteria ranges requested in the Codex guidelines(CAC/GL 40). CONCLUSION: The proposed analytical method was accurate, effective and sensitive for aclonifen determination and it will be used to as an official method in Korea.

Development and Characterization of EMS-induced Mutants with Enhanced Salt Tolerance in Silage Maize (EMS 유도 내염성 증진 사료용 옥수수 돌연변이체 선발 및 특성 분석)

  • Cho, Chuloh;Kim, Kyung Hwa;Seo, Mi-Suk;Choi, Man-Soo;Chun, Jaebuhm;Jin, Mina;Kim, Dool-Yi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.406-415
    • /
    • 2020
  • Maize (Zea mays L.) is one of the most valuable agricultural crops and is grown under a wide spectrum of environmental conditions. However, maize is moderately sensitive to salt stress, and soil salinity is a serious threat to its production worldwide. In this study, we used ethyl methane sulfonate (EMS) to generate salt-tolerant silage maize mutants. We screened salt-tolerant lines from 203 M3 mutant populations by evaluating the morphological phenotype after salt stress treatment and selected the 140ES91 line. The 140ES91 mutant showed improved plant growth as well as higher proline content and leaf photosynthetic capacity compared with those of wild-type plants under salt stress conditions. Using whole-genome re-sequencing analysis, 1,103 single nucleotide polymorphisms and 71 insertions or deletions were identified as common variants between KS140 and 140ES91 in comparison with the reference genome B73. Furthermore, the expression patterns of three genes, which are involved in salt stress responses, were increased in the 140ES91 mutant under salt stress. Taken together, the mutant line identified in our study could be used as an improved breeding material for transferring salt tolerance traits in maize varieties.

Effect of LED Light Intensity on Seedling Quality and Tuber Production of Potato Stem Cuttings Grown in a Closed-Type Plant Production System (폐쇄형식물생산시스템을 이용한 감자 경삽묘 육묘시 묘소질과 괴경 생산에 대한 LED 광도의 영향)

  • Jo, Man Hyun;Ham, In Ki;Park, Kwon Seo;Cho, Ji Hong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.468-476
    • /
    • 2020
  • This study was performed to establish light intensity conditions for producing stem cuttings for aeroponic systems suitable for seed potato production using a closed-type plant production system. Shoot tip cultured plantlets of 'Sumi' and 'Chubaek' potato (Solanum tuberosum L.) were acclimatized, cuttings were collected, and stem cuttings were planted. The seedlings were raised for 40 days at different LED light intensities (60, 120, 180, and 240 μmol·m-2·s-1), and were cultivated in an aeroponic system for 80 days. When stem cuttings were raised at 60 μmol·m-2·s-1 LED light intensity, the plant height was the longest, at 17.3 cm for 'Sumi' and 16.1 cm for 'Chubaek', and the number of nodes was the highest in both cultivars. The higher light intensities, produced smaller plants with fewer nodes. The leaf areas, SPAD values, and Fv/Fm values differed slightly between cultivars. The fresh weight of stem cuttings, and the production rate of healthy stem cuttings were the highest at 60 μmol·m-2·s-1. In the aeroponic system, seedlings raised at 60 μmol·m-2·s-1 with LED light intensity showed a difference between the cultivars, but the fresh weight of stems and leaves above the planting plate was the heaviest. In addition, below the planting plate the stem cuttings were longest and the root weight was heaviest at 60 μmol·m-2·s-1 LED light intensity. The number of stolons also differed between cultivars, but was greatest for seedlings raised at 60 μmol·m-2·s-1 LED light intensity, at 4.2/plant for 'Sumi' and 7.7/plant for 'Chubaek'. At 60 μmol·m-2·s-1 LED light intensity, the tuber number and total tuber weight were the best, but the higher the light intensity, the smaller the total tuber number and total tuber weight for both cultivars. In conclusion, when producing potato stem cuttings for aeroponic systems using a closed-type plant production system, the most suitable LED light intensity for raising seedlings was found to be 60 μmol·m-2·s-1.