• 제목/요약/키워드: leading matrix

검색결과 213건 처리시간 0.023초

가소화 저항 향상을 위한 기체분리막 소재 개발 동향 (Review on Membrane Materials to Improve Plasticization Resistance for Gas Separations)

  • 조진희;지원석
    • 멤브레인
    • /
    • 제30권6호
    • /
    • pp.385-394
    • /
    • 2020
  • 기체분리공정에서 사용되는 분리막은 높은 기체 투과 및 분리성능과 고온·고압 조건에서 높은 안정성을 보여야 한다. 하지만 고분자분리막(특히, 유리상 고분자)은 응축 가능한 기체 분자(예를 들어, CO2, H2S, hydrocarbon 등)에 노출되면 고분자 사슬이 부풀어 오르는 가소화 현상을 보여 안정성 측면에서 한계를 보인다. 이러한 가소화 현상은 고압의 복합기체 분리공정에서 선택도를 감소시켜 장기적으로는 고분자분리막이 분리공정에 도입될 수 없는 문제를 가져온다. 이러한 가소화 현상 문제를 해결하기 위해서 분리막 연구자들은 분리막 열처리, 고분자 혼합, 고분자구조의 열적 재배열, 혼합매질분리막 제작, 가교화 방법 등을 통하여 분리막의 가소화 저항을 향상시켰다. 본 총설에서는 고분자 분리막의 가소화 저항의 개념 및 현상에 대해서 알아보고 이를 해결할 수 있는 인자들과 그와 연관된 연구들을 살펴보도록 할 것이다.

Syringaresinol derived from Panax ginseng berry attenuates oxidative stress-induced skin aging via autophagy

  • Choi, Wooram;Kim, Hyun Soo;Park, Sang Hee;Kim, Donghyun;Hong, Yong Deog;Kim, Ji Hye;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제46권4호
    • /
    • pp.536-542
    • /
    • 2022
  • Background: In aged skin, reactive oxygen species (ROS) induces degradation of the extracellular matrix (ECM), leading to visible aging signs. Collagens in the ECM are cleaved by matrix metalloproteinases (MMPs). Syringaresinol (SYR), isolated from Panax ginseng berry, has various physiological activities, including anti-inflammatory action. However, the anti-aging effects of SYR via antioxidant and autophagy regulation have not been elucidated. Methods: The preventive effect of SYR on skin aging was investigated in human HaCaT keratinocytes in the presence of H2O2, and the keratinocyte cells were treated with SYR (0-200 ㎍/mL). mRNA and protein levels of MMP-2 and -9 were determined by real-time PCR and Western blotting, respectively. Radical scavenging activity was researched by 2,2 diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. LC3B level was assessed by Western blotting and confocal microscopy. Results: SYR significantly reduced gene expression and protein levels of MMP-9 and -2 in both H2O2-treated and untreated HaCaT cells. SYR did not show cytotoxicity to HaCaT cells. SYR exhibited DPPH and ABTS radical scavenging activities with an EC50 value of 10.77 and 10.35 ㎍/mL, respectively. SYR elevated total levels of endogenous and exogenous LC3B in H2O2-stimulated HaCaT cells. 3-Methyladenine (3-MA), an autophagy inhibitor, counteracted the inhibitory effect of SYR on MMP-2 expression. Conclusion: SYR showed antioxidant activity and up-regulated autophagy activity in H2O2-stimulated HaCaT cells, lowering the expression of MMP-2 and MMP-9 associated with skin aging. Our results suggest that SYR has potential value as a cosmetic additive for prevention of skin aging.

Investigation of Tensile Behaviors in Open Hole and Bolt Joint Configurations of Carbon Fiber/Epoxy Composites

  • Dong-Wook Hwang;Sanjay Kumar;Dong-Hun Ha;Su-Min Jo;Yun-Hae Kim
    • Composites Research
    • /
    • 제36권4호
    • /
    • pp.259-263
    • /
    • 2023
  • This study investigated the open hole tensile (OHT) properties of carbon fiber/epoxy composites and compared them to bolt joint tensile (BJT) properties. The net nominal modulus and strength (1376 MPa) were found to be higher than the gross nominal strength (1041 MPa), likely due to increasing hole size. The OHT and BJT specimens exhibited similar stiffness, as expected without bolt rotation causing secondary bending. OHT specimens experienced a sharp drop in stress indicating unstable crack propagation, delamination, and catastrophic failure. BJT specimens failed through shear out on the bolt side and bearing failure on the nut side, involving fiber kinking, matrix splitting, and delamination, resulting in lower strength compared to OHT specimens. The strength retention of carbon fiber/epoxy composites with open holes was 66%. Delamination initiation at the hole's edge caused a reduction in the stress concentration factor. Filling the hole with a bolt suppressed this relieving mechanism, leading to lower strength in BJT specimens compared to OHT specimens. Bolt joint efficiency was calculated as 15%. The reduction in strength in bolted joints was attributed to fiber-matrix splitting and delamination, aligning with Hart Smith's bolted joint efficiency diagram. These findings contribute to materials selection and structural reliability estimation for carbon fiber/epoxy composites. They highlight the behavior of open hole and bolt joint configurations under tensile loading, providing valuable insights for engineering applications.

클러스터링 기법을 이용한 하이브리드 영화 추천 시스템 (Hybrid Movie Recommendation System Using Clustering Technique)

  • 싯소포호트;펭소니;양예선;일홈존;김대영;박두순
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.357-359
    • /
    • 2023
  • This paper proposes a hybrid recommendation system (RS) model that overcomes the limitations of traditional approaches such as data sparsity, cold start, and scalability by combining collaborative filtering and context-aware techniques. The objective of this model is to enhance the accuracy of recommendations and provide personalized suggestions by leveraging the strengths of collaborative filtering and incorporating user context features to capture their preferences and behavior more effectively. The approach utilizes a novel method that combines contextual attributes with the original user-item rating matrix of CF-based algorithms. Furthermore, we integrate k-mean++ clustering to group users with similar preferences and finally recommend items that have highly rated by other users in the same cluster. The process of partitioning is the use of the rating matrix into clusters based on contextual information offers several advantages. First, it bypasses of the computations over the entire data, reducing runtime and improving scalability. Second, the partitioned clusters hold similar ratings, which can produce greater impacts on each other, leading to more accurate recommendations and providing flexibility in the clustering process. keywords: Context-aware Recommendation, Collaborative Filtering, Kmean++ Clustering.

Recombinant Human HAPLN1 Mitigates Pulmonary Emphysema by Increasing TGF-β Receptor I and Sirtuins Levels in Human Alveolar Epithelial Cells

  • Yongwei Piao;So Yoon Yun;Zhicheng Fu;Ji Min Jang;Moon Jung Back;Ha Hyung Kim;Dae Kyong Kim
    • Molecules and Cells
    • /
    • 제46권9호
    • /
    • pp.558-572
    • /
    • 2023
  • Chronic obstructive pulmonary disease (COPD) will be the third leading cause of death worldwide by 2030. One of its components, emphysema, has been defined as a lung disease that irreversibly damages the lungs' alveoli. Treatment is currently unavailable for emphysema symptoms and complete cure of the disease. Hyaluronan (HA) and proteoglycan link protein 1 (HAPLN1), an HA-binding protein linking HA in the extracellular matrix to stabilize the proteoglycan structure, forms a bulky hydrogel-like aggregate. Studies on the biological role of the full-length HAPLN1, a simple structure-stabilizing protein, are limited. Here, we demonstrated for the first time that treating human alveolar epithelial type 2 cells with recombinant human HAPLN1 (rhHAPLN1) increased TGF-β receptor 1 (TGF-β RI) protein levels, but not TGF-β RII, in a CD44-dependent manner with concurrent enhancement of the phosphorylated Smad3 (p-Smad3), but not p-Smad2, upon TGF-β1 stimulation. Furthermore, rhHAPLN1 significantly increased sirtuins levels (i.e., SIRT1/2/6) without TGF-β1 and inhibited acetylated p300 levels that were increased by TGF-β1. rhHAPLN1 is crucial in regulating cellular senescence, including p53, p21, and p16, and inflammation markers such as p-NF-κB and Nrf2. Both senile emphysema mouse model induced via intraperitoneal rhHAPLN1 injections and porcine pancreatic elastase (PPE)-induced COPD mouse model generated via rhHAPLN1-containing aerosols inhalations showed a significantly potent efficacy in reducing alveolar spaces enlargement. Preclinical trials are underway to investigate the effects of inhaled rhHAPLN1-containing aerosols on several COPD animal models.

Proposal and Analysis of Distributed Reflector-Laser Diode Integrated with an Electroabsorption Modulator

  • Kwon, Oh Kee;Beak, Yong Soon;Chung, Yun C.;Park, Hyung-Moo
    • ETRI Journal
    • /
    • 제35권3호
    • /
    • pp.459-468
    • /
    • 2013
  • A novel integrated laser, that is, a distributed reflector laser diode integrated with an electroabsorption modulator, is proposed to improve the output efficiency, single-mode stability, and chirp. The proposed laser can be realized using the selective metalorganic vapor phase epitaxy technique (that is, control of the width of the insulating mask), and its fabrication process is almost the same as the conventional electroabsorption modulated laser (EML) process except for the asymmetric coupling coefficient structure along the cavity. For our analysis, an accurate time-domain transfer-matrix-based laser model is developed. Based on this model, we perform steady-state and large-signal analyses. The performances of the proposed laser, such as the output power, extinction ratio, and chirp, are compared with those of the EML. Under 10-Gbps NRZ modulation, we can obtain a 30% higher output power and about 50% lower chirp than the conventional EML. In particular, the simulation results show that the chirp provided by the proposed laser can appear to have a longer wavelength side at the leading edge of the pulse and a shorter wavelength side at the falling edge.

Ginsenosides: potential therapeutic source for fibrosis-associated human diseases

  • Li, Xiaobing;Mo, Nan;Li, Zhenzhen
    • Journal of Ginseng Research
    • /
    • 제44권3호
    • /
    • pp.386-398
    • /
    • 2020
  • Tissue fibrosis is an eventual pathologic change of numerous chronic illnesses, which is characterized by resident fibroblasts differentiation into myofibroblasts during inflammation, coupled with excessive extracellular matrix deposition in tissues, ultimately leading to failure of normal organ function. Now, there are many mechanistic insights into the pathogenesis of tissue fibrosis, which facilitate the discovery of effective antifibrotic drugs. Moreover, many chronic diseases remain a significant clinical unmet need. For the past five years, many research works have undoubtedly addressed the functional dependency of ginsenosides in different types of fibrosis and the successful remission in various animal models treated with ginsenosides. Caveolin-1, interleukin, thrombospondin-1 (TSP-1), liver X receptors (LXRs), Nrf2, microRNA-27b, PPARδ-STAT3, liver kinase B1 (LKB1)-AMPK, and TGF-β1/Smads are potential therapy targeting using ginsenosides. Ginsenosides can play a targeting role and suppress chronic inflammatory response, collagen deposition, and epitheliale-mesenchymal transition (EMT), as well as myofibroblast activation to attenuate fibrosis. In this report, our aim was to focus on the therapeutic prospects of ginsenosides in fibrosis-related human diseases making use of results acquired from various animal models. These findings should provide important therapeutic clues and strategies for the exploration of new drugs for fibrosis treatment.

Performance evaluation of β-glucan treated lean clay and efficacy of its choice as a sustainable alternative for ground improvement

  • Kumara, S. Anandha;Sujatha, Evangelin Ramani
    • Geomechanics and Engineering
    • /
    • 제21권5호
    • /
    • pp.413-422
    • /
    • 2020
  • The choice of eco-friendly materials for ground improvement is a necessary way forward for sustainable development. Adapting naturally available biopolymers will render the process of soil stabilization carbon neutral. An attempt has been made to use β-glucan, a natural biopolymer for the stabilization of lean clay as a sustainable alternative with specific emphasis on comprehending the effect of confining stresses on lean clay through triaxial compression tests. A sequence of laboratory experiments was performed to examine the various physical and mechanical characteristics of β-glucan treated soil (BGTS). Micro-analysis through micrographs were used to understand the strengthening mechanism. Results of the study show that the deviatoric stress of 2% BGTS is 12 times higher than untreated soil (UTS). The micrographs from Scanning Electron Microscopy (SEM) and the results of the Nitrogen-based Brunauer Emmett Teller (N2-BET) analysis confirm the formation of new cementitious fibres and hydrogels within the soil matrix that tends to weld soil particles and reduce the pore spaces leading to an increase in strength. Hydraulic conductivity (HC) and compressibility reduced significantly with the biopolymer content and curing period. Results emphases that β-glucan is an efficient and sustainable alternative to the traditional stabilizers like cement, lime or bitumen.

Kevlar-29 섬유강화 복합재료의 기계적 계면 특성 연구 (Studies on Mechanical Interfacial Properties of Kevlar-29 Fibers Reinforced Composites)

  • Park, Soo-Jin;Seo, Min-Kang;Ma, Tae-Jun;Lee, Jae-Rock
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.158-162
    • /
    • 2001
  • The effects of chemical treatment on Kevlar-29 fibers have been studied in a composite system. The surface characteristics of the Kevlar-29 fibers were characterized by pH, acid-base value and X-ray photoelectron spectroscopy (XPS). The mechanical interfacial properties of final composites were studied by interlaminar shear strength (ILSS) and critical stress intensity factor ($K_{IC}$). Also, the impact properties of the composites were investigated in the differentiating studies between initiation and propagation energies, and ductile index (DI) along with maximum farce and total energy. It was found that the chemical treatment with phosphoric acid ($H_3PO_4$) solution significantly affected the degree of adhesion at interfaces between fibers and resin matrix, resulting in improving the mechanical interfacial strength of the composites. This was probably due to the presence of chemical polar groups on Kevlar surfaces, leading to an increment of interfacial binding force in a composite system.

  • PDF

Dairy Dietary Calcium and Osteoporosis - An Overview

  • Jayaprakasha, H.M.;Yoon, Y.C.
    • Journal of Dairy Science and Biotechnology
    • /
    • 제22권2호
    • /
    • pp.143-150
    • /
    • 2004
  • The osteoporosis is a disease characterized by lower bone mineral content, deterioration of bone tissue and a reduction in the protein and mineral matrix of the bone. The bone becomes more porous leading to increased bone fragility and risk of fracture, particularly of the hip, spine and wrist. Osteoporosis can result in disfigurement, lowered self·esteem, reduction or loss of mobility, and decreased independence. Adequate calcium intake through milk and milk products in childhood and adolescence is a decisive marker for obtaining a maximum bone mass (peak adult bone mass) and f3r the prevention of osteoporosis. Calcium is one of the most critical nutrients associated with the osteoporosis. Dietary calcium is of great significance for healthy skeletal growth and development. The bone mineral content and bone mineral density of young adults is directly related to the calcium intake through milk and dairy products. Milk and milk products are the important sources of calcium as the richness and bioavailability of this nutrient is very high as compared to other food products. If enough calcium is not supplemented through diet, calcium from the bone will be depleted to maintain the blood plasma calcium level. The article focuses on the various issues related to osteoporosis manifestation and the role of dietary calcium especially calcium derived from dairy products.

  • PDF