Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.6.385

Review on Membrane Materials to Improve Plasticization Resistance for Gas Separations  

Jo, Jin Hui (School of Polymer Science and Engineering, Chonnam National University)
Chi, Won Seok (School of Polymer Science and Engineering, Chonnam National University)
Publication Information
Membrane Journal / v.30, no.6, 2020 , pp. 385-394 More about this Journal
Abstract
In the gas separation process, the separation membranes have to not only show high gas transport and selectivity but also exhibit exceptional stability at high temperature and pressure. However, when the polymeric membranes (particularly, glassy polymers) are exposed to the condensable gases (i.e., CO2, H2S, hydrocarbon, etc.), the polymer chains are prone to swell, leading to low stability. As a result, the plasticization behavior reduces the gas selectivity in the separation of mixture gases at high pressures and thus results in limited applications to the separation processes. To address these issues, many strategies have been studied such as thermal treatment, polymer blending, thermally rearrangement, mixed-matrix membranes, cross-linking, etc. In this review, we will understand the plasticization behavior and suggest potential methods based on the previously reported studies.
Keywords
gas separations; plasticization resistance; polymer materials; mixed-matrix membranes; cross-linking; thermal treatment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. D. Wind, C. Staudt-Bickel, D. R. Paul, and W. J. Koros, "The effects of crosslinking chemistry on CO2 plasticization of polyimide gas separation membranes", Ind. Eng. Chem. Res., 41, 6139 (2002).   DOI
2 M. Galizia, W. S. Chi, Z. P. Smith, T. C. Merkel, R. W. Baker, and B. D. Freeman, "50th anniversary perspective: Polymers and mixed matrix membranes for gas and vapor separation: A review and prospective opportunities", Macromolecules, 50, 7809 (2017).   DOI
3 S. R. Reijerkerk, K. Nijmeijer, C. P. Ribeiro, B. D. Freeman, and M. Wessling, "On the effects of plasticization in CO2/light gas separation using polymeric solubility selective membranes", J. Membr. Sci., 367, 33 (2011).   DOI
4 A. Marcano, K. Fatyeyeva, M. Koun, P. Dubuis, M. Grimme, and S. Marais, "Recent developments in the field of barrier and permeability properties of segmented polyurethane elastomers", Rev. Chem. Eng., 35, 445 (2019).   DOI
5 A. Bos, I. G. M. Punt, M. Wessling, and H. Strathmann, "Plasticization-resistant glassy polyimide membranes for CO2/CO4 separations", Sep. Purif. Technol., 14, 27 (1998).   DOI
6 G. Dong, H. Li, and V. Chen, "Plasticization mechanisms and effects of thermal annealing of matrimid hollow fiber membranes for CO2 removal", J. Membr. Sci., 369, 206 (2011).   DOI
7 J. J. Krol, M. Boerrigter, and G. H. Koops, "Polyimide hollow fiber gas separation membranes: preparation and the suppression of plasticization in propane/propylene environments", J. Membr. Sci., 184, 275 (2001).   DOI
8 A. F. Ismail and W. Lorna, "Suppression of plasticization in polysulfone membranes for gas separations by heat-treatment technique", Sep. Purif. Technol., 30, 37 (2003).   DOI
9 W. F. Yong, K. H. A. Kwek, K. S. Liao, and T. S. Chung, "Suppression of aging and plasticization in highly permeable polymers", Polymer, 77, 377 (2015).   DOI
10 A. Bos, I. Punt, H. Strathmann, and M. Wessling, "Suppression of gas separation membrane plasticization by homogeneous polymer blending", AIChE J., 47, 1088 (2001).   DOI
11 W. F. Yong, F. Y. Li, T. S. Chung, and Y. W. Tong, "Molecular interaction, gas transport properties and plasticization behavior of cPIM-1/Torlon blend membranes", J. Membr. Sci., 462, 119 (2014).   DOI
12 A. Brunetti, M. Cersosimo, G. Dong, K. T. Woo, J. Lee, J. S. Kim, Y. M. Lee, E. Drioli, and G. Barbieri, "In situ restoring of aged thermally rearranged gas separation membranes", J. Membr. Sci., 520, 671 (2016).   DOI
13 C. A. Scholes, C. P. Ribeiro, S. E. Kentish, and B. D. Freeman, "Thermal rearranged poly(benzoxazole-co-imide) membranes for CO2 separation", J. Membr. Sci., 450, 72 (2014).   DOI
14 D. F. Sanders, R. Guo, Z. P. Smith, Q. Liu, K. A. Stevens, J. E. McGrath, D. R. Paul, and B. D. Freeman, "Influence of polyimide precursor synthesis route and ortho-position functional group on thermally rearranged (TR) polymer properties: Conversion and free volume", Polymer, 55, 1636 (2014).   DOI
15 C. A. Scholes, C. P. Ribeiro, S. E. Kentish, and B. D. Freeman, "Thermal rearranged poly(benzoxazole)/polyimide blended membranes for CO2 separation", Sep. Purif. Technol., 124, 134 (2014).   DOI
16 H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas, S. T. Mudie, E. Van Wagner, B. D. Freeman, D. J. Cookson, "Polymers with cavities tuned for fast selective rransport of small molecules and ions", Science, 318, 254 (2007).   DOI
17 M. Z. Ahmad, T. A. Peters, N. M. Konnertz, T. Visser, C. Tellez, J. Coronas, V. Fila, W. M. de Vos, and N. E. Benes, "High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes", Sep. Purif. Technol., 230, 115858 (2020).   DOI
18 K. L. Gleason, Z. P. Smith, Q. Liu, D. R. Paul, and B. D. Freeman, "Pure- and mixed-gas permeation of CO2 and CH4 in thermally rearranged polymers based on 3,3'-dihydroxy-4,4'-diamino-biphenyl (HAB) and 2,2'-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA)", J. Membr. Sci., 475, 204 (2015).   DOI
19 P. S. Goh, A. F. Ismail, S. M. Sanip, B. C. Ng, and M. Aziz, "Recent advances of inorganic fillers in mixed matrix membrane for gas separation", Sep. Purif. Technol., 81(3), 243 (2011).   DOI
20 D. Gomes, S. P. Nunes, and K. V. Peinemann, "Membranes for gas separation based on poly(1-trimethylsilyl-1-propyne)-silica nanocomposites", J. Membr. Sci., 246(1), 13 (2005).   DOI
21 K. K. Gangu, S. Maddila, S. B. Mukkamala, and S. B. Jonnalagadda, "A review on contemporary metal-organic framework materials", Inorganica Chim. Acta, 446, 61 (2016).   DOI
22 S. Shahid and K. Nijmeijer, "Performance and plasticization behavior of polymer-MOF membranes for gas separation at elevated pressures", J. Memb. Sci., 470, 166 (2014).   DOI
23 Y. Ying, Y. Cheng, S. B. Peh, G. Liu, B. B. Shah, L. Zhai, and D. Zhao, "Plasticization resistance-enhanced CO2 separation at elevated pressures by mixed matrix membranes containing flexible metal-organic framework fillers", J. Membr. Sci., 582, 103 (2019).   DOI
24 R. W. Baker and B. T. Low, "Gas separation membrane materials: A perspective", Macromolecules, 47, 6999 (2014).   DOI
25 P. S. Tin, T. S. Chung, Y. Liu, R. Wang, S. L. Liu, and K. P. Pramoda, "Effects of cross-linking modification on gas separation performance of matrimid membranes", J. Membr. Sci., 225(1), 77 (2003).   DOI
26 Y. Liu, R. Wang, and T. S. Chung, "Chemical cross-linking modification of polyimide membranes for gas separation", J. Membr. Sci., 189(2), 231 (2001).   DOI
27 Y. M. Xu, N. L. Le, J. Zuo, and T. S. Chung, "Aromatic polyimide and crosslinked thermally rearranged poly(benzoxazole-co-imide) membranes for isopropanol dehydration via pervaporation", J. Membr. Sci., 499, 317 (2016).   DOI
28 R. Xu, L. Li, X. Jin, M. Hou, L. He, Y. Lu, C. Song, and T. Wang, "Thermal crosslinking of a novel membrane derived from phenolphthalein-based cardo poly(arylene ether ketone) to enhance CO2/CH4 separation performance and plasticization resistance", J. Membr. Sci., 586, 306 (2019).   DOI
29 A. M. W. Hillock and W. J. Koros, "Cross-linkable polyimide membrane for natural gas purification and carbon dioxide plasticization reduction", Macromolecules, 40, 583 (2007).   DOI
30 R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393 (2002).   DOI
31 L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008).   DOI
32 J. Dechnik, J. Gascon, C. J. Doonan, C. Janiak, and C. J. Sumby, "Mixed-matrix membranes", Angew. Chemie Int. Ed., 56, 9292 (2017).   DOI
33 M. R. Tant and G. L. Wilkes, "An overview of the nonequilibrium behavior of polymer glasses", Polym. Eng. Sci., 21, 874 (1981).   DOI
34 B. W. Rowe, B. D. Freeman, and D. R. Paul, "Physical aging of ultrathin glassy polymer films tracked by gas permeability", Polymer, 50, 5565 (2009).   DOI
35 A. Bos, I. G. M. Punt, M. Wessling, and H. Strathmann, "CO2-induced plasticization phenomena in glassy polymers", J. Membr. Sci., 155, 67 (1999).   DOI
36 J. E. Bachman, Z. P. Smith, T. Li, T. Xu, and J. R. Long, "Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals", Nat. Mater., 15, 845 (2016).   DOI