• Title/Summary/Keyword: leader velocity

Search Result 17, Processing Time 0.026 seconds

Leader-following Approach Based Adaptive Formation Control for Mobile Robots with Unknown Parameters (미지의 파라미터를 갖는 이동 로봇들을 위한 선도-추종 방법 기반 적응 군집 제어)

  • Moon, Ssurey;Park, Bong-Seok;Choi, Yoon-Ho;Park, Jin-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1592-1598
    • /
    • 2011
  • In this paper, a formation control method based on the leader-following approach for nonholonomic mobile robots is proposed. In the previous works, it is assumed that the followers know the leader's velocity by means of communication. However, it is difficult that the followers correctly know the leader's velocity due to the contamination or delay of information. Thus, in this paper, an adaptive approach based on the parameter projection algorithm is proposed to estimate the leader's velocity. Moreover, the adaptive backstepping technique is used to compensate the effects of a dynamic model with the unknown time-invariant and time-varying parameters. From the Lyapunov stability theory, it is proved that the errors of the closed-loop system are uniformly ultimately bounded. Simulation results illustrate the effectiveness of the proposed control method.

Leader Robot Controller Considering Follower with Input Constraint (입력 제한을 가진 추종 로봇을 고려한 선도 로봇 제어기)

  • Lee, Seung-Joo;Hong, Suk-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1032-1040
    • /
    • 2012
  • This paper proposes controller of leader robot considering following robot with input constraints based on leader-following approach. In the previous formation control researches, it was assumed that leader and follower is same object. If leader robot drives as maximum speed that the initial position errors still remain even if following robot have same velocity as a leader. In the situation that velocity of following robot is lower than its leader robot, following robot cannot follow leader robot. Furthermore, the following robot will not be able to made formation with leader robot and keep proximity communication or sensing range. Therefore, multiple mobile robot system using leader-following method should be guaranteed range to get information each other. In this paper, Leader robot is driving to goal position using linear controller and following robot is following trajectory to be made from leader robot. We assume that following robot has input constraints to realize different performance between leader robot and following robot. We design controller of leader robot for desired goal position including the errors between formation and following robot. Thus, we propose leader robot controller considering input constraints of following robot. Finally, we were able to confirm the validity of the proposed method based on simulation results.

Leader-Following Based Adaptive Formation Control for Multiple Mobile Robots (다개체 이동 로봇을 위한 선도-추종 접근법 기반 적응 군집 제어)

  • Park, Bong-Seok;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.428-432
    • /
    • 2010
  • In this paper, an adaptive formation control based on the leader-following approach is proposed for multiple mobile robots with time varying parameters. The proposed controller does not require the velocity information of the leader robot, which is commonly assumed that it is either measured or telecommunicated. In order to estimate time varying velocities of the leader robot, the smooth projection algorithm is employed. From the Lyapunov stability theory, it is proved that the proposed control scheme can guarantee the uniform ultimate boundedness of error signals of the closed-loop system. Finally, the computer simulations are performed to demonstrate the performance of the proposed control system.

UAV Formation Wight Control Law Utilizing Energy Maneuverability

  • Choi, Jong-Ug;Kim, You-Dan;Moon, Gwan-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.31-41
    • /
    • 2008
  • This paper deals with the energy saving problem of the follower aircraft in the loose leader-follower formation geometry in which the lateral separation between formation members is more than a wingspan of the leader aircraft. This formation geometry offers no drag benefit, but has a strategic advantage. In the case of loose formation flight, the follower aircraft usually consumes more energy than the leader aircraft because the follower aircraft should use more thrust to maintain given formation geometry, especially during the turning phase from the outside of the leader"s flight path or join-up phase. A formation control scheme based on the energy maneuverability is proposed in this paper. To design the proposed control law, the velocity command is designed using feedback linearization for the horizontal formation geometry and then coverts it to the altitude command using the energy equation. Numerical simulation is performed to verify the effectiveness of the proposed controller.

Characteristics of Positive Leader in Medium Gap (중간극 (20cm) 정극성 리-더의 진전 특성)

  • Oh, C.H.;Choi, Y.S.;Shu, W.C.
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.484-485
    • /
    • 1987
  • The characteristics of leader development in rod -to- plane air gap (20cm gap length) under positive impulse potentials have been studied by means of 2-photomultiplier technique and image intensifier camera. It was shown that the streamers radiate relatively short wavelength light (${\sim}340nm$) while the leaders radiate a plenty of long wave length light ($400{\sim}800nm$). It was also known that the streamers propagate very fast with a velocity of $6{\times}l0^7cm/sec$ but the leaders have average velocity of $5{\times}10^6cm/sec$ and they proceed gradually fast by step-wise development.

  • PDF

Three-dimensional Guidance Law for Formation Flight of UAV

  • Min, Byoung-Mun;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.463-467
    • /
    • 2005
  • In this paper, the guidance law applicable to formation flight of UAV in three-dimensional space is proposed. The concept of miss distance, which is commonly used in the missile guidance laws, and Lyapunov stability theorem are effectively combined to obtain the guidance commands of the wingmen. The propose guidance law is easily integrated into the existing flight control system because the guidance commands are given in terms of velocity, flight path angle and heading angle to form the prescribed formation. In this guidance law, communication is required between the leader and the wingmen to achieve autonomous formation. The wingmen are only required the current position and velocity information of the leader vehicle. The performance of the proposed guidance law is evaluated using the complete nonlinear 6-DOF aircraft system. This system is integrated with nonlinear aerodynamic and engine characteristics, actuator servo limitations for control surfaces, various stability and control augmentation system, and autopilots. From the nonlinear simulation results, the new guidance law for formation flight shows that the vehicles involved in formation flight are perfectly formed the prescribed formation satisfying the several constraints such as final velocity, flight path angle, and heading angle.

  • PDF

An Adaptive Vehicle Platoon Formation Mechanism for Road Capacity Improvement (도로 용량 증대를 위한 적응적 차량 플라툰 형성 기법)

  • Su, Dongliang;Ahn, Sanghyun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.10
    • /
    • pp.327-330
    • /
    • 2016
  • In the road environment with lots of vehicles, we can increase the number of vehicles on the road (i.e., road capacity) and enhance the comfortability of drivers if vehicles are organized into platoons. In the traditional vehicle platooning mechanisms, a pre-determined set of vehicles are allowed to form a platoon and, among them, a specific vehicle is designated as the platoon leader. In this type of platoon mechanisms, platoon is limited in improving the road capacity because the vehicles allowed to involve into platooning are restricted. Therefore, in this paper, we propose an adaptive platoon formation mechanism that allows any vehicle to be a platoon leader from which a platoon is formed. In the proposed mechanism, a platoon leader is elected based on the relative velocity and location information of neighboring vehicles obtained through the periodic exchange of beacon messages among vehicles. Through the NS-3 based simulations, we show the performance of our proposed mechanism in terms of road capacity improvement.

Dissemination of Traffic-Jam Information in inter-vehicle ad-hoc networks (차량간 Ad hoc 네트워크에서 트래픽 잼 정보의 전달 방법)

  • Chang, Hyeong-Jun;Park, Gwi-Tae
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.293-295
    • /
    • 2009
  • In an Intelligent Transport System(ITS), data dissemination based on inter-vehicle communication is effective for acquiring real-time traffic-jam information. In this paper, we propose a novel method for traffic jam information dissemination in vehicular ad-hoc networks. In our proposed method, vehicles already trapped in a Traffic-Jam elect leaders according to their locations from upstream and downstream respectively. Then each leader generates traffic data which contains their position, velocity and leader counter respectively, and disseminate the information. {{br}}The implementation of our proposed method is evaluated by means of simulation, and we also present simulation result

  • PDF

A decentralized control of cooperative transportation by multiple mobile robots using neural network compensator

  • Yang, Xin;Watanabe, Keigo;Kiguchi, Kazuo;Izumi, Kiyotaka
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.50.5-50
    • /
    • 2002
  • In this paper, we propose a method using neural network (NN) to improve the motion control of a decentralized control system for cooperative transportation. In our former work, a decentralized control system for transporting a single object by multiple nonholonomic mobile robots has been developed. One of these mobile robots acts as a leader, who is assumed to be able to plan and to manipulate the omnidirectional motion of the object. Other robots, referred to as followers, cooperatively transport the object by keeping a constant position relative to the object. in this work, it is assumed that the leader can not only plan but also broadcast the local velocity of the object. Then...

  • PDF

Formation Flying of small Satellites Using Coulomb Force

  • Lee, Dong-Hun;Lee, Hyun-Jae;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.84-90
    • /
    • 2006
  • The formation flying of satellites has been identified as an enabling technology for many future space missions. The application of conventional thrusters for formation flying usually results in high cost, limited life-time, and a large weight penalty. Various methods including the use of coulomb forces have been considered as an alternative to the conventional thrusters. In the present investigation, we investigate the feasibility of achieving the desired formation using Coulomb forces. This method has several advantages including low cost, light weight and no contamination. A simple controller based on the relative position and velocity errors between the leader and follower satellites is developed. The proposed controller is applied to circular formations considering the effects of disturbances in initial formation conditions as well as system nonlinearity. Results of the numerical simulation state that the proposed controller is successful in establishing circular formations of leader and follower satellites, for a formation size below 100 m.