• Title/Summary/Keyword: lead free

Search Result 1,085, Processing Time 0.026 seconds

Enhanced photon shielding efficiency of a flexible and lightweight rare earth/polymer composite: A Monte Carlo simulation study

  • Wang, Ying;Wang, Guangke;Hu, Tao;Wen, Shipeng;Hu, Shui;Liu, Li
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1565-1570
    • /
    • 2020
  • Photons with the energy of 60 keV are regularly used for some kinds of bone density examination devices, like the single photon absorptiometry (SPA). This article reports a flexible and lightweight rare earth/polymer composite for enhancing shielding efficiency against photon radiation with the energy of 60 keV. Lead oxide (PbO) and several rare earth element oxides (La2O3, Ce2O3, Nd2O3) were dispersed into natural rubber (NR) and the photon radiation shielding performance of the composites were assessed using monte carlo simulation method. For 60 keV photons, the shielding efficiency of rare earthbased composites were found to be much higher than that of the traditional lead-based composite, which has bad absorbing ability for photons with energies between 40 keV and 88 keV. In comparison with the lead oxide based composite, Nd2O3-NR composite with the same protection standard (the lead equivalent is 0.25 mmPb, 0.35 mmPb and 0.5 mmPb, respectively), can reduce the thickness by 35.29%, 37.5% and 38.24%, and reduce the weight by 38.91%, 40.99% and 41.69%, respectively. Thus, a flexible, lightweight and lead-free rare earth/NR composite could be designed, offering efficient photon radiation protection for the users of the single photon absorptiometry (SPA) with certain energy of 60 keV.

Prediction of Shielding Performance by Thickness by Comparing the Single and Laminated Structures of Lead-free Radiation Fusion Shielding Sheets (무연 방사선 융합 차폐시트 단일 구조와 적층 구조의 비교를 통한 두께별 차폐성능 예측)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.105-110
    • /
    • 2021
  • Radiation shielding of affinity material, which is widely used in medical institutions, is made in sheet form and is mainly applied to apron. Shielding performance is presented based on lead equivalent, and is presented as 0.25-0.50mmPb. In the case of shielding materials where lead is used as the main material, the shielding performance can be adjusted by thickness due to the excellent machinability of lead. However, eco-friendly shielding sheets are difficult to control shielding performance based on thickness criteria as shielding performance varies depending on the content of shielding materials, the properties of polymeric materials that are base materials, and the technical differences in the process. In this study, shielding sheets were manufactured based on thickness to solve these problems and the shielding performance was compared in this study. As a result, it was shown that the laminated structure shielding sheet was more effective.

Microwave Assisted Extraction, Optimization using Central Composite Design, Quantitative Estimation of Arjunic Acid and Arjunolic Acid using HPTLC and Evaluation of Radical Scavenging Potential of Stem Bark of Terminalia arjuna

  • Khatkar, Sarita;Nanda, Arun;Ansari, S.H.
    • Natural Product Sciences
    • /
    • v.23 no.2
    • /
    • pp.75-83
    • /
    • 2017
  • The optimization and microwave assisted extraction of stem bark of Terminalia arjuna, quantitative estimation of the marker compounds arjunic acid and arjunolic acid using HPTLC and the evaluation of free radical scavenging activity has been performed in this study. The central composite design was used for optimization and the values of parameters for optimized batch of microwave assisted extraction were 1000 W (Power), 3 minutes (Time) and 1/120 (Solid/solvent ratio). The solvent system to carry out the HPTLC was toluene: acetic acid: ethyl acetate (5: 5: 0.5) and quantitative estimation was done using standard equations obtained from the marker compounds. The in-vitro free radical scavenging activity was performed spectrophotometrically using ascorbic acid as standard. The value of estimated percentage yield of arjunic acid and arjunolic acid was 1.42% and 1.52% which upon experimentation was obtained as 1.38% and 1.51% respectively. The DPPH assay of the different batches of microwave assisted extraction and marker compounds taken suggested that the marker compounds arjunic acid and the arjunolic acid were responsible for the free radical scavenging activity as the batch having the maximum percentage yield of the marker compounds showed best free radical scavenging effect as compared to standard ascorbic acid. The $IC_{50}$ value of the optimized batch was found to be 24.72 while that of the standard ascorbic acid was 29.83. Hence, the yield of arjunic acid and arjunolic acid has direct correlation with the free radical scavenging activity of stem bark extract of Terminalia arjuna and have potential to serve as active lead compounds for free radical scavenging activity.

Effects of Infants' Free Play in Forests on the Development of Their Sociality (숲에서의 자유놀이가 유아의 사회성 발달에 미치는 영향)

  • Boo, Eun-Soon;Oh, Chang-Hong;Cheong, Donguk;Park, Jung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4855-4864
    • /
    • 2013
  • The purpose of this research is to examine the effects of infants' free play in forests on the development of their sociality. The 24 infants of a kindergarten in Jeju city, who is four years old, participated in the research. Participants freely played in forests for two hours at each time according to their own interests and demands, and this play performed twice every week for total 12 weeks. The results are as followed. Firstly, the free play activities in forests improved the infants' sociality. Secondly, the activities improved every sub-factors of the sociality such as cooperativeness, the acceptance of view, the free will, and the interaction. The results indicate that forests provide rich natural objects for infants to create various and new play by themselves. In addition, the free play activities in forests could build good inter-personal relationship through active interaction among the infants and lead positive impact on the development of their sociality.

Fabrication of 1 ㎛ Thickness Lead Zirconium Titanate Films Using Poly(N-vinylpyrrolidone) Added Sol-gel Method

  • Oh, Seung-Min;Kang, Min-Gyu;Do, Young-Ho;Kang, Chong-Yun;Yoon, Seok-Jin;Nahm, Sahn
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.5
    • /
    • pp.222-225
    • /
    • 2011
  • Lead zirconate titanate (PZT) films were fabricated on Pt/Ti/$SiO_2$/Si substrate by the sol-gel method using a sol containing poly(N-vinylpyrrolidone) (PVP). PVP in alkoxide solutions can suppress the condensation reaction in gel films during heat treatment, and increase the viscosity of alkoxide solutions. Single-phase PZT films as thick as 1 ${\mu}m$ were deposited by repetitive coating with successive third-step heat treatments at 150$^{\circ}C$, 350$^{\circ}C$ and 650$^{\circ}C$. After heat treatment, the films were crack free, and optically transparent. As a result, we demonstrated a PZT film with a PVP molar ratio of 0.5, which has a permittivity of 734, a dielectric loss of 0.042, a $P_r$ of 40.5 ${\mu}C/cm^2$ and an $E_c$ of 156 kV/cm.

Adsorption characteristics of lead ion in aqueous solution by volcanic ash (화산재에 의한 수용액의 납 이온 흡착특성)

  • Kim, Mi-Yeon;So, Myeong-Gi;Kim, Yeong-Gwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.359-366
    • /
    • 2011
  • The feasibility of using volcanic ash for lead ion removal from wastewater was evaluated. The adsorption experiments were carried out in batch tests using volcanic ash that was treated with either NaOH or HCl prior to the use. Volcanic ash dose, temperature and initial Pb(II) concentration were chosen as 3 operational variables for a $2^3$ factorial design. Ash dose and concentration were found to be significant factors affecting Pb(II) adsorption. The removal of Pb(II) was enhanced with increasing volcanic ash dose and with decreasing the initial Pb(II) concentration. Pb(II) adsorption on the volcanic ash surface was spontaneous reaction and favored at high temperatures. Calculation of Gibb's free energy indicated that the adsorption was endothermic reaction. The equilibrium parameters were determined by fitting the Langmuir and Freundlich isotherms, and Langmuir model better fitted to the data than Freundlich model. BTV(base-treated volcanic ash) showed the maximum adsorption capacity($Q_{max}$) of 47.39mg/g. A pseudo second-order kinetic model was fitted to the data and the calculated $q_e$ values from the kinetic model were found close to the values obtained from the equilibrium experiments. The results of this study provided useful information about the adsorption characteristics of volcanic ash for Pb(II) removal from aqueous solution.

Study on the Electrical Insulation of Current Lead in the conduction-cooled 1-2kV Class High-Tc Superconducting DC Reactor (전도냉각되는 1-2kV급 고온초전도 직류리액터 전류도입부의 전기적 절연에 대한 연구)

  • 배덕권;안민철;이찬주;정종만;고태국;김상현
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.30-34
    • /
    • 2002
  • In this Paper, Insulation of current lead in the conduction-cooled DC reactor for the 1.2kV class 3 high-Tc superconducting fault current limiter(SFCL) is studied. Thermal link which conducts heat energy but insulates electrical energy is selected as a insulating device for the current lead in the conduction-cooled Superconducting DC reactor. It consists of oxide free copper(OFC) sheets, Polyimide films, glass fiberglass reinforced Plastics (GFRP) plates and interfacing material such an indium or thermal compound. Through the test of dielectric strength in L$N_2$, polyimide film thickness of 125 ${\mu}{\textrm}{m}$ is selected as a insulating material. Electrical insulation and heat conduction are contrary to each other. Because of low heat conductivity of insulator and contact area between electrical insulator and heat conductor, thermal resistance of conduction-cooled system is increased. For the reducing of thermal resistance and the reliable contact between Polyimide and OFC, thermal compound or indium can be used As thermal compound layer is weak layer in electrical field, indium is finally selected for the reducing of thermal resistance. Thermal link is successfully passed the test. The testing voltage was AC 2.5kVrms and the testing time was 1 hour.

Effects of Alloying Elements on the Surface Characteristics of Pb-Substrate for Battery (Pb-기판의 표면특성에 미치는 합금원소의 영향)

  • Oh, S.W.;Choe, H.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.6
    • /
    • pp.302-311
    • /
    • 2006
  • Nowadays the open-type lead-acid battery for vehicle use is being replaced with the sealed-type because it needs no maintenance and has a longer cycle life. Thus researches on this battery are being conducted very actively by many advanced battery companies. There is, however, a serious problem with the maintenance free(MF) battery that its cathode electrode has a limited cycle life due to a corrosion of grid. In this study, it was aimed to improve a corrosion resistance of the cathode grid which is commonly made of Pb-Ca alloy for a mechanical strength. For this purpose, various amounts of alloying elements such as Sn, Ag and Ba were added singly or together to the Pb-Ca alloys and investigated their corrosion behaviors. Batteries fabricated by using these alloys as cathode grids were subjected to life cycle test and their corrosion layers appeared at the interface between the grids and the active materials were carefully observed in order to clarify effects of alloying elements.

Enhancement of Hydroformability Through the Reduction of the Local Strain Concentration (국부적 변형 집중 저감을 통한 액압 성형성 개선연구)

  • Shin, S.G.R.;Joo, B.D.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.5
    • /
    • pp.317-322
    • /
    • 2014
  • Bursting during tube hydroforming is preceded by localized necking. The retardation of the initiation of necking is a means to enhance hydroformability. Since high strain gradients occur at the necking sites, a decrease in local strain gradients is an effective way to retard the initiation of necking. In the current study, the expansion at potential necking sites was intentionally restricted in order to reduce the strain gradient at potential necking sites. From the strain distribution obtained from FEM, it is possible to determine strain concentrated zones, which are the potential necking sites. Prior to the hydroforming of a trailing arm, an incompressible material(such as lead) is attached to the tube where the strain-concentrated zone would contact the die. Due to the incompressibility of lead, the tube expansion is locally restricted, and the resultant strain extends to adjacent regions of the tube during hydroforming. After the first stage of hydroforming, the lead is removed from the tube, and the hydroforming continues to the final targeted shape without any local restriction. This method was successfully used to fabricate a complex shaped automotive trailing arm that had previously failed during traditional hydroforming fabrication.

Electrochemical Reaction and Short-Circuit Behavior between Lead Borate Glass Doped with Metal Filler and Ni-Cr Alloy Wire (금속 필러가 첨가된 Pb-B-O계 유리와 Ni-Cr 합금 와이어 간의 전기 화학적 반응과 단락 거동)

  • Choi, Jin Sam;Nakayama, Tadachika
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.471-479
    • /
    • 2021
  • The electrochemical reaction between lead borate glass frit doped with Sn metal filler and Ni-Cr wire of a J-type resistor during a term of Joule heating is investigated. The fusing behavior in which the Ni-Cr wire is melted is not observed for the control group but measured for the Sn-doped specimen under 30 V and 500 mA. The Sn-doped lead borate glass frit shows a fusing property compared with other metal-doped specimens. Meanwhile, the redox reaction significantly contributes to the fusing behavior due to the release of free electrons of the metal toward the glass. The electrons derived from the glass, which used Joule heat to reach the melting point of Ni-Cr wire, increase with increasing corrosion rate at interface of metal/glass. Finally, the confidence interval is 95 ± 1.959 %, and the adjusted regression coefficient, R in the optimal linear graph, is 0.93, reflecting 93% of the data and providing great potential for fusible resistor applications.