DOI QR코드

DOI QR Code

Electrochemical Reaction and Short-Circuit Behavior between Lead Borate Glass Doped with Metal Filler and Ni-Cr Alloy Wire

금속 필러가 첨가된 Pb-B-O계 유리와 Ni-Cr 합금 와이어 간의 전기 화학적 반응과 단락 거동

  • Choi, Jin Sam (Ulsan Industry University Convergence Institute) ;
  • Nakayama, Tadachika (Dept. of Electrical Engineering/Electronic Devices and Optical Electronics Group, Nagaoka University of Technology)
  • Received : 2021.07.02
  • Accepted : 2021.08.09
  • Published : 2021.08.27

Abstract

The electrochemical reaction between lead borate glass frit doped with Sn metal filler and Ni-Cr wire of a J-type resistor during a term of Joule heating is investigated. The fusing behavior in which the Ni-Cr wire is melted is not observed for the control group but measured for the Sn-doped specimen under 30 V and 500 mA. The Sn-doped lead borate glass frit shows a fusing property compared with other metal-doped specimens. Meanwhile, the redox reaction significantly contributes to the fusing behavior due to the release of free electrons of the metal toward the glass. The electrons derived from the glass, which used Joule heat to reach the melting point of Ni-Cr wire, increase with increasing corrosion rate at interface of metal/glass. Finally, the confidence interval is 95 ± 1.959 %, and the adjusted regression coefficient, R in the optimal linear graph, is 0.93, reflecting 93% of the data and providing great potential for fusible resistor applications.

Keywords

Acknowledgement

This work was supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (N0016976, The Establishment Project of Industry-University Fusion District).

References

  1. F. F. Oakley, U. S. Patent, 269,668 (1952).
  2. K. Hinooka, U. S. Patent, 5,153,458 (1992).
  3. Y. J. Kim, J Korean Inst. IIIum. Electr. Install. Eng., 24, 120(2010).
  4. G. Tang, C. Yang, J. Chai and H. Gong, Int. J. Heat Mass Tran., 47, 215 (2004). https://doi.org/10.1016/j.ijheatmasstransfer.2003.07.006
  5. S. K. Das, N. Putra, P. Thiesen and W. Roetzel, J. Heat Transfer, 125, 567 (2003). https://doi.org/10.1115/1.1571080
  6. T. Tanaka, A. Ishikawa and S. Kawata, Appl. Phys. Lett., 88, 1(2006).
  7. D. K. Reinhard, D. Adler and F. O. Arntz, J. Appl. Phys., 47, 1560 (1976). https://doi.org/10.1063/1.322771
  8. J. S. Choi, D. Y. Jeong, D. W. Shin and W. T. Bae, J. Korean Ceram. Soc., 50, 238 (2013). https://doi.org/10.4191/kcers.2013.50.3.238
  9. S. D. Christian, J. Chem. Educ., 42, 604 (1965). https://doi.org/10.1021/ed042p604
  10. J. S. Choi, Korean J. Mat. Res., 30, 223 (2020). https://doi.org/10.3740/MRSK.2020.30.5.223
  11. M. Hosokawa, Nanoparticle Technology Handbook, ed. K. Nogi, M. Naito and T. Yokoyama, p.8, Elsevier, Amsterdam, Netherlands (2007).
  12. M. P. Borom and J. A. Pask, J. Am. Ceram. Soc., 49, 1(1966).
  13. G. PaParoni, J. D. Webster and D. Walker, American Miner., 95, 776 (2010). https://doi.org/10.2138/am.2010.3317
  14. L. V. D. Tempel, G. G. Melis and T. C. Brandsma, Glass Phys. Chem., 26, 606 (2000). https://doi.org/10.1023/A:1007164501169
  15. A. Q. Tool, L. W. Tilton and J. B. Saunders, J. Res. Natl. Bur. Stand., 38, 519 (1947). https://doi.org/10.6028/jres.038.034
  16. M. Hubert, A. Faber, H. Sesigur, F. Akmaz, 77th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, p.115 (2017).
  17. D. L. Perry and T. J. Wilkinson, Appl. Phys. A, 89, 77 (2007). https://doi.org/10.1007/s00339-007-4073-y
  18. A. Fluegel, D. A. Earl, A. K. Varshneya and T. P. Seward, Phys. Chem. Glasses: Eur. J. Glass Sci. Tech., B, 49, 245 (2008).
  19. J. S. Choi, J. Korean Ceram. Soc., 51, 312 (2014). https://doi.org/10.4191/kcers.2014.51.4.312
  20. V. G. Karpov and D. A. Parshin, Sov. Phys. JETP, 61, 1308 (1985).
  21. D. Gaskell, Introduction to Metallurgical Thermodynamics, 2nd Ed., p. 585, McGRAW-Hill, New york (1981).
  22. P. Anderson, B. I. Halperin and C. M. Varma, Philos. Mag., 25, 1(1972). https://doi.org/10.1080/14786437208229210
  23. C. Chanmung, M. Naksata, T. C. Chairuangsri, H. Jain and C. E. Lyman, Mater. Sci. Eng., A, 474, 218 (2008). https://doi.org/10.1016/j.msea.2007.04.016
  24. T. S. Chern and H. L. Tsai, Mater. Chem. Phys., 104, 472 (2007). https://doi.org/10.1016/j.matchemphys.2007.04.012
  25. H. S. Lee and C. H. Rhee, J. Korean Chem. Soc., 35, 469 (1991).
  26. H. Lee, J. K. Singh, M. A. Ismail, C. Bhattacharya, A. H. Seikh, N. Alharthi and R. R. Hussain, Sci. Rep., 9, 3399 (2019). https://doi.org/10.1038/s41598-019-39943-3