Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.8.471

Electrochemical Reaction and Short-Circuit Behavior between Lead Borate Glass Doped with Metal Filler and Ni-Cr Alloy Wire  

Choi, Jin Sam (Ulsan Industry University Convergence Institute)
Nakayama, Tadachika (Dept. of Electrical Engineering/Electronic Devices and Optical Electronics Group, Nagaoka University of Technology)
Publication Information
Korean Journal of Materials Research / v.31, no.8, 2021 , pp. 471-479 More about this Journal
Abstract
The electrochemical reaction between lead borate glass frit doped with Sn metal filler and Ni-Cr wire of a J-type resistor during a term of Joule heating is investigated. The fusing behavior in which the Ni-Cr wire is melted is not observed for the control group but measured for the Sn-doped specimen under 30 V and 500 mA. The Sn-doped lead borate glass frit shows a fusing property compared with other metal-doped specimens. Meanwhile, the redox reaction significantly contributes to the fusing behavior due to the release of free electrons of the metal toward the glass. The electrons derived from the glass, which used Joule heat to reach the melting point of Ni-Cr wire, increase with increasing corrosion rate at interface of metal/glass. Finally, the confidence interval is 95 ± 1.959 %, and the adjusted regression coefficient, R in the optimal linear graph, is 0.93, reflecting 93% of the data and providing great potential for fusible resistor applications.
Keywords
resistor; Joule heating; dopant; redox reaction; fusing model.;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. G. Karpov and D. A. Parshin, Sov. Phys. JETP, 61, 1308 (1985).
2 C. Chanmung, M. Naksata, T. C. Chairuangsri, H. Jain and C. E. Lyman, Mater. Sci. Eng., A, 474, 218 (2008).   DOI
3 T. S. Chern and H. L. Tsai, Mater. Chem. Phys., 104, 472 (2007).   DOI
4 H. S. Lee and C. H. Rhee, J. Korean Chem. Soc., 35, 469 (1991).
5 H. Lee, J. K. Singh, M. A. Ismail, C. Bhattacharya, A. H. Seikh, N. Alharthi and R. R. Hussain, Sci. Rep., 9, 3399 (2019).   DOI
6 L. V. D. Tempel, G. G. Melis and T. C. Brandsma, Glass Phys. Chem., 26, 606 (2000).   DOI
7 G. Tang, C. Yang, J. Chai and H. Gong, Int. J. Heat Mass Tran., 47, 215 (2004).   DOI
8 F. F. Oakley, U. S. Patent, 269,668 (1952).
9 K. Hinooka, U. S. Patent, 5,153,458 (1992).
10 Y. J. Kim, J Korean Inst. IIIum. Electr. Install. Eng., 24, 120(2010).
11 S. K. Das, N. Putra, P. Thiesen and W. Roetzel, J. Heat Transfer, 125, 567 (2003).   DOI
12 T. Tanaka, A. Ishikawa and S. Kawata, Appl. Phys. Lett., 88, 1(2006).
13 D. K. Reinhard, D. Adler and F. O. Arntz, J. Appl. Phys., 47, 1560 (1976).   DOI
14 S. D. Christian, J. Chem. Educ., 42, 604 (1965).   DOI
15 J. S. Choi, Korean J. Mat. Res., 30, 223 (2020).   DOI
16 A. Q. Tool, L. W. Tilton and J. B. Saunders, J. Res. Natl. Bur. Stand., 38, 519 (1947).   DOI
17 M. Hosokawa, Nanoparticle Technology Handbook, ed. K. Nogi, M. Naito and T. Yokoyama, p.8, Elsevier, Amsterdam, Netherlands (2007).
18 M. P. Borom and J. A. Pask, J. Am. Ceram. Soc., 49, 1(1966).
19 G. PaParoni, J. D. Webster and D. Walker, American Miner., 95, 776 (2010).   DOI
20 M. Hubert, A. Faber, H. Sesigur, F. Akmaz, 77th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, p.115 (2017).
21 D. L. Perry and T. J. Wilkinson, Appl. Phys. A, 89, 77 (2007).   DOI
22 A. Fluegel, D. A. Earl, A. K. Varshneya and T. P. Seward, Phys. Chem. Glasses: Eur. J. Glass Sci. Tech., B, 49, 245 (2008).
23 J. S. Choi, J. Korean Ceram. Soc., 51, 312 (2014).   DOI
24 J. S. Choi, D. Y. Jeong, D. W. Shin and W. T. Bae, J. Korean Ceram. Soc., 50, 238 (2013).   DOI
25 D. Gaskell, Introduction to Metallurgical Thermodynamics, 2nd Ed., p. 585, McGRAW-Hill, New york (1981).
26 P. Anderson, B. I. Halperin and C. M. Varma, Philos. Mag., 25, 1(1972).   DOI