• 제목/요약/키워드: lead biosorption

검색결과 34건 처리시간 0.024초

해양 갈조류를 생물흡착제로 이용한 납흡착 특성 연구 (Characteristics of Lead Biosorption by Biosorbents of Marine Brown Algae)

  • 이민규;서정대
    • 한국환경과학회지
    • /
    • 제6권5호
    • /
    • pp.531-539
    • /
    • 1997
  • Lead sorption performances by biomass of nonliving, dried marine brown algae Undaria phnaunda, Hlzikia hsyormls. and Sugassum fulvellum used as biosorbent materials were investigated. As the amount of biosorbent materials added was increased, the lead removal by biosorbent materials Increased but the lead biosorption capacities decreased. However, with increasing Initial lead concentration the lead biosorption capacities by the biosorbent materials Increased but lead removal efficiencies decreased. In the range of Initial lead concentration(Co) 10-500 mg/L the lead biosorption capacities and removal efficiencies by the biosorbent materials Increased with increasing pH. Among the biosorbent materials used in this study, the lead biosorption capacities decreased in the following sequence: U. plilnaunda > H. fusiformis > S. fulvellum. The lead biosorption by biosorbent materials were expressed by the Langmuir Isotherm better than the Freundlich Isotherm. The biosorption rate could be expressed by the first order reaction rate equation for initial lead concentration like that rad : 0.288Co for U. phanda, rad = 0.255Co for H. fusiformis, and rad : 0.161Co for S. fulvellum. Key words : Lead, biosorption, biosorbent, Undaria pinnatinda, Hiztkia fusiformis, Sargassum fulvellum, Langmuir isotherm, Freundlich isotherm, biosorption rate.

  • PDF

Lead Biosorption by Biosorbent Materials of Marine Brown Algae U. pinnatifida, H. fusiformis, and S. fulvellum

  • LEE Mingyu;KAM Sangkyu;LEE Donghwan
    • 한국수산과학회지
    • /
    • 제30권6호
    • /
    • pp.936-943
    • /
    • 1997
  • Biosorbents of nonliving, dried marine brown algae Undaria pinnatifida, Hizikia fusiformis, and Sargassum fulvellum were investigated for their lead biosorption performances. As the amount of biosorbent added was increased, the lead removal by biosorbent materials increased but the lead biosorption capacities decreased. However the lead biosorption capacity by the biosorbent materials increased with increasing initial lead concentration and pH in the range of $C_o\;10\~500\;mg/L$. Among the biosorbent materials used in this study, the lead biosorption capacity in the solutions with no pH adjustment decreased in the following sequence: U. pinnatifida > H. fusiformis > S. fulvellum. Equilibrium parameters based on Langmuir and Freundlich isotherm were determined. It was found that the lead biosorption by biosorbent materials were expressed by the Langmuir isotherm better than the Freundlich isotherm.

  • PDF

Biosorption of lead by Laminaria japonica

  • Jung-Ho;Il-Bae;Hak-Sung
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2003년도 International Symposium on Clean Environment
    • /
    • pp.208-211
    • /
    • 2003
  • Characteristics of biosorption of lead by marine algae, Laminaria japonica, were examined. The biosorption capacity of lead by L. japonica was achieved up to 30% of its own weight and proportional to the initial lead concentration. However, the opposite result was shown in different initial weight of biomass. Ion exchange reaction between lead ions and calcium ions was observed on lead biosorption with Ca-Ioaded biomass. Stoichiometric coefficient, which can represent the exchange ratio between metal ions and protons during elution process, was determined as 1.39. Therefore, it was concluded that the reaction between lead ions already attached in biomass and protons in bulk solution was not fully stoichiometric ion exchange relation at elution process.

  • PDF

Biosorption and Elution of Lead by Undaria pinnatifida

  • Suh, Jung-Ho;Suh, Myung-Gyo;Lee, Yong-Hee;Lee, Kook-Eui;Kim, Bong-Seob
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2003년도 Challenges and Achievements in Environmental Health
    • /
    • pp.111-115
    • /
    • 2003
  • Biosorption of lead by marine algae, Undaria pinnatifida, was examined. The biosorption capacity of lead by U. pinnatifida was above 30% of its own weight and proportional to the initial lead concentration. However, the opposite result was shown in different initial weight of biomass. The mechanism of biosorption was accorded to the ion exchange process.

  • PDF

Zoogloea ramigera 115SLR을 이용한 납 생물흡착특성 (Biosorption Characteristics of Lead (II) Using Zoogloea ramigera 115SLR)

  • 김성현;송훈;손석일;임인권;정욱진
    • 상하수도학회지
    • /
    • 제20권1호
    • /
    • pp.63-70
    • /
    • 2006
  • Biosorption characteristics were investigated at various temperature and pH conditions in order to establish lead(II) removal using Zoogloea ramigera 115SLR. Biosorption equilibrium isotherms and kinetics were obtained from batch experiments. The Freundlich and Langmuir model could be described the biosorption equilibrium of lead(II) on Z. ramigera 115SLR, Ca-alginate bead and immobilized Z. ramigera 115SLR. The maximum biosorption capacity of Z. ramigera 115SLR increased from 325 to 617mg $pb^{2+}/g$ biomass as temperature increased from 288.15 K to 308.15K from the Langmuir model. Fixed-bed column breakthrough curves for lead(II) removal were also obtained. For regeneration of the biosorbent, complete lead(II) desorption was achieved using 5mM HCl in fixed-bed column. This study shows the possibilities that well-treated immobilized Z. ramigera 115SLR with the mechanical intensity like TEOS (Tetraethyl orthosilicate) treatment and the optimum acid solution for desorption can be used for the effective treatment for lead(II) containing wastewater.

Biosorption of Lead(II) by Arthrobacter sp. 25: Process Optimization and Mechanism

  • Jin, Yu;Wang, Xin;Zang, Tingting;Hu, Yang;Hu, Xiaojing;Ren, Guangming;Xu, Xiuhong;Qu, Juanjuan
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권8호
    • /
    • pp.1428-1438
    • /
    • 2016
  • In the present work, Arthrobacter sp. 25, a lead-tolerant bacterium, was assayed to remove lead(II) from aqueous solution. The biosorption process was optimized by response surface methodology (RSM) based on the Box-Behnken design. The relationships between dependent and independent variables were quantitatively determined by second-order polynomial equation and 3D response surface plots. The biosorption mechanism was explored by characterization of the biosorbent before and after biosorption using atomic force microscopy (AFM), scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The results showed that the maximum adsorption capacity of 9.6 mg/g was obtained at the initial lead ion concentration of 108.79 mg/l, pH value of 5.75, and biosorbent dosage of 9.9 g/l (fresh weight), which was close to the theoretically expected value of 9.88 mg/g. Arthrobacter sp. 25 is an ellipsoidal-shaped bacterium covered with extracellular polymeric substances. The biosorption mechanism involved physical adsorption and microprecipitation as well as ion exchange, and functional groups such as phosphoryl, hydroxyl, amino, amide, carbonyl, and phosphate groups played vital roles in adsorption. The results indicate that Arthrobacter sp. 25 may be potentially used as a biosorbent for low-concentration lead(II) removal from wastewater.

Laminaria japonica와 Kjellmaniella crassifolia를 이용한 Pb의 생체흡착 : 흡착속도 및 흡착평형 모델링 (Biosorption of Lead ions onto Laminaria japonica and Kjellmaniella crassifolia : Equilibrium and Kinetic Modelling)

  • 이창한;안갑환
    • 대한환경공학회지
    • /
    • 제27권11호
    • /
    • pp.1238-1243
    • /
    • 2005
  • 본 연구에서는 해안가에서 자생하는 두 종의 해조류(Laminaria japonica와 Kjellmaniella crassifolia)를 생체흡착제로 사용하여 용액중의 중금속(납) 제거 실험을 통해 생체흡착제의 납의 흡착속도와 흡착평형 특성을 연구하였다. 두 종의 해조류을 사용한 납의 생체흡착은 흡착초기 2시간 이내에 평형에 도달하였다. 흡착속도는 유사 2차 흡착속도식에 의해 거의 정확한 모사가 가능하였으며, 여기에서 산출된 속도상수, $k_{2,ad.}$는 각각 $0.883{\times}10^{-3}$$0.628{\times}10^{-3}\;g/mg/min$이었다. 흡착평형은 Langmuir, Redlich-Peterson 및 Koble-Corrigan (Langmuir-Freundlich) 모델식에 의해 잘 모사되었다. 또한, L. japonica와 K. crassifolia의 4가지 중금속에 대한 선택성은 Pb>Cd>Cr>Cu와 Pb>Cu>Cd>Cr순으로 나타났다. 본 실험에 사용된 L. japonica는 pH의 증가에 따라 납의 흡착량도 증가되었다.

납의 생물흡착에 미치는 세포외고분자물질의 영향 (Effect of Extracellular Polymeric Substances(EPS) on the Biosorption of Lead by Microorganisums)

  • 서정호;김동석;송승구
    • KSBB Journal
    • /
    • 제14권1호
    • /
    • pp.66-70
    • /
    • 1999
  • A pullulans와 S Cerevisiae의 납 제거 특성을 비교하고, 미생물이 분비하는 세포외고분자물질의 영향에 대해 고찰하였다. A pullulans의 경우에 미생물의 보관시간이 증가할수록 미생물이 분비하는 세포외고분자물질의 양도 증가하였으며, 납 제거능도 우수해졌다. 그러나 세포외고분자물질을 제거한 A pullulans세포에서는 납 흡착량이 약 10%로 매우 적었다. S Cerevisiae의 경우에는 세포외고분자물질은 거의 분비되지 않았으며, 보관시간에 따른 납 흡착량의 변화는 거의 없었다. 또한 보관시간이 경과할수록 흡착 평형에 도달하는 시간은 점점 짧아졌다. 따라서 A pullulans와 S Cerevisiae의 납제거 기작은 세포외고분자물질의 유무에 따라 매우 달라짐을 알 수 있었다.

  • PDF

불완전 균류 Aureobasdium pullulans으로 납을 제거하기 위한 인자들과 흡착모델 (Biosorption Model and Factors for Removing Lead to Aureobasdium pullulans being Imperfect Fungus)

  • 서정호;서명교;정경태;이용희
    • 생명과학회지
    • /
    • 제16권6호
    • /
    • pp.877-883
    • /
    • 2006
  • 발효산업에 많이 사용되는 A. pullulans를 사용하여 독성 중금속인 납에 대한 제거량을 살펴보았다. 용액 중의 중금속을 제거할 때 A. pullulans가 다른 중금속에 비해 납에 대한 선택성이 우수하였으며 $40^{\circ}C$에서 최대 흡착량을 나타내었으며 또한 최적 pH가 9일 경우에 흡착량이 증가하였다. 초기납의 농도가 96 mg/l 인 경우에 단위 미생물당 흡착량이 120mg/g로 짧은 시간내에 많은 양의 납을 제거함을 알 수 있었다. 그리고 약 200 mg Pb/g cell dry weight 정도가 최대 납 흡착량인 것으로 나타났다. 그리고 미생물의 보존기간에 따라 세포외 고분자물질의 분비가 증가하여 납 흡착량을 증가시켰으며, Freundlich 모델에 잘 적용되었다. 그리고 살아있는 상태가 사멸된 상태에서 평형흡착량은 약 2배 정도 흡착능이 우수함을 알 수 있었으며, 그에 따라서 초기 흡착속도도 살아있는 상태가 사멸된 상태보다 훨씬 빠른 것을 알 수 있었다.

Fixed bed column modeling of lead(II) and cadmium(II) ions biosorption on sugarcane bagasse

  • Vera, Luisa Mayra;Bermejo, Daniel;Uguna, Maria Fernanda;Garcia, Nancy;Flores, Marittza;Gonzalez, Enrique
    • Environmental Engineering Research
    • /
    • 제24권1호
    • /
    • pp.31-37
    • /
    • 2019
  • In this paper the results of the biosorption of lead(II) and cadmium(II) with sugarcane bagasse in fixed bed columns are presented. Experimental data were fitted to several models describing the rupture curve for single-component and two-component systems. The percentages of removal of lead and cadmium in single-component systems are 91% and 90%, respectively. In lead-cadmium bicomponent systems the percentage of elimination of lead was 90% and cadmium 92%. In single-component systems, Yoon-Nelson and Thomas models successfully reproduce the rupture curves. In two-component system, the Dose-Response model was the best one reproducing the experimental rupture curves in the entire measured range.