• Title/Summary/Keyword: layered-perovskite phase

Search Result 60, Processing Time 0.026 seconds

Electrical Properties of SBT Capacitors with various Annealing Atmosphere (다양한 열처리 분위기에 따른 SBT 커패시터의 전기적 특성)

  • 조춘남;김진사;신철기;최운식;김충혁;홍진웅;이준웅
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.3
    • /
    • pp.207-213
    • /
    • 2003
  • The Sr$\_$0.7/Bi$\_$2.6/Ta$_2$O$\_$9/(SBT) thin films are deposited on Pt-coated electrode(Pt/TiO$_2$/SiO$_2$/Si) using RF magnetron sputtering method. The structural and electrical properties of SBT capacitors were influenced with annealing atmosphere. In the XRD pattern, the SBT thin films in all annealed atmosphere had (105) orientation. In the SEM images, Bi-layered perovskite phase was crystallized in all annealing atmosphere and grain largely grew in oxygen annealing atmosphere. The maximum remnant polarization and the coercive electric field in oxygen annealing atmosphere are 12.40[${\mu}$C/cm$^2$] and 30[kV/cm] respectively. The dielectric constant and leakage current density of capacitors annealed oxygen atmosphere are 340 and 2.13${\times}$10$\^$-9/ [A/cm$^2$] respectively. The fatigue characteristics of SBT capacitors did not change up to 10$\^$10/ switching cycles.

Electrical Properties of SBT Capacitors with Top Electrodes (다양한 상부전극에 따른 SBT 커패시터의 전기적 특성)

  • 조춘남;오용철;김진사;정일형;신철기;최운식;김충혁;이준웅
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.12
    • /
    • pp.553-558
    • /
    • 2003
  • The A S $r_{0.7}$B $i_{2.6}$T $a_2$ $O_{9}$ (SBT)thin films are deposited on Pt-coated electrode(Pt/$TiO_2$/$SiO_2$/Si) using a RF magnetron sputtering method. The electrical properties of SBT capacitors with top electrodes were studied. In the XRD pattern, the SBT thin films in all annealing temperatures had (105) orientation. In the SEM images, Bi-layered perovskite phase was crystallized at 75$0^{\circ}C$ and grains largely grew in oxygen annealing atmosphere. The electrical properties of SBT capacitor with top electrodes represent a favorable properties in Pt electrode. The maximum remanent polarization and the coercive electric field with Pt electrode are 12.40C/$\textrm{cm}^2$ and 30kV/cm, respectively. The dielectric constant and leakage current density with Pt electrode is 340 and 6.8110$^{-10}$ A/$\textrm{cm}^2$, respectively.y.y.

Electrical Properties of SBT Capacitor with top electrodes (상부전극에 따른 SBT 커패시터의 전기적 특성)

  • Jo, Chun-Nam;O, Yong-Cheol;Kim, Jin-Sa;Sin, Cheol-Gi;Choe, Un-Sik;Kim, Chung-Hyeok;Park, Yong-Pil;Hong, Jin-Ung;Lee, Jun-Ung
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1499-1501
    • /
    • 2003
  • The A $Sr_{0.7}Bi_{2.6}Ta_2O_9$(SBT)thin films are deposited on Pt-coated electrode(Pt/$TiO_2/SiO_2$/Si) using RF magnetron sputtering method. The electrical properties of SBT capacitors with top electrodes were studied. In the XRD pattern, the SBT thin films in all annealing temperatures had (105) orientation. In the SEM images, Bi-layered perovskite phase was crystallized at $750^{\circ}C$ and grains largely grew in oxygen annealing atmosphere. The electrical properties of SBT capacitor with top electrodes represents a favorable properties in Pt electrode. The maxim urn remanent polarization and the coercive electric field with Pt electrode are $12.40C/cm^2$and 30kV/cm respectively. The dielectric constant and leakage current density with Pt electrode is 340 and $6.8110^{-10}A/cm^2$ respectively.

  • PDF

Experimental Study on Millimeter Scale Two Phase Catalytic Reactor (밀리미터 스케일의 이상 분해 반응기에 대한 실험적 연구)

  • Cho, Chung-Hun;Lee, Dae-Hoon;Kwon, Se-JIn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.265-270
    • /
    • 2004
  • Experiment study on a down scaled two-phase catalytic reactor is presented. As a preliminary step for the development of catalytic reactor, nano-particulate catalyst was prepared. Perovskite La$\_$0.8/Sr$\_$0.2/CoO$_3$is chosen and synthesized as a catalyst considering superior catalytic performance in reduction and oxidation process where oxygen is involved among the reagent. Reactor that has a scale of 2${\times}$10${\times}$25mm was made by machining of A1 block as a layered structure considering further extension to micro-machining. Hydrogen peroxide of 70wt% was adopted as reactant and was provided to the reactor loaded with 1.5 g of catalyst. Reactant flow rate was varied by precision pump with a range of 0.15cc/min to 17.2cc/min. Temperature distribution within reactor was recorded by 3 thermocouples and total amount of liquid product was measured. Temperature distribution and factors that affect temperature were observed and relation between temperature distribution and production rate was also analyzed. Relative time scale plays a significant role in the performance of the reactor. To obtain steady state operation, appropriate ratio of flow rate, catalyst mass and reactor geometry is required and furthermore to get more efficient production rate temperature distribution should be evenly distributed. The database obtained by the experiment will be used as a design parameter for micro reactor.

Effects of Dysprosium and Thulium addition on microstructure and electric properties of co-doped $BaTiO_3$ for MLCCs

  • Kim, Do-Wan;Kim, Jin-Seong;Noh, Tai-Min;Kang, Do-Won;Kim, Jeong-Wook;Lee, Hee-Soo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.48.2-48.2
    • /
    • 2010
  • The effect of additives as rare-earth in dielectric materials has been studied to meet the development trend in electronics on the miniaturization with increasing the capacitance of MLCCs (multi-layered ceramic capacitors). It was reported that the addition of rare-earth oxides in dielectrics would contribute to enhance dielectric properties and high temperature stability. Especially, dysprosium and thulium are well known to the representative elements functioned as selective substitution in barium titanate with perovskite structure. The effects of these additives on microstructure and electric properties were studied. The 0.8 mol% Dy doped $BaTiO_3$ and the 1.0 mol% Tm doped $BaTiO_3$ had the highest electric properties as optimized composition, respectively. According to the increase of rare-earth contents, the growth of abnormal grains was suppressed and pyrochlore phase was formed in more than solubility limits. Furthermore, the effect of two rare-earth elements co-doped $BaTiO_3$ on the dielectric properties and insulation resistance was investigated with different concentration. The dielectric specimens with $BaTiO_3-Dy_2O_3-Tm2O_3$ system were prepared by design of experiment for improving the electric properties and sintered at $1320^{\circ}C$ for 2h in a reducing atmosphere. The dielectric properties were evaluated from -55 to $125^{\circ}C$ (at $1KHz{\pm}10%$ and $1.0{\pm}0.2V$) and the insulation resistance was examined at 16V for 2 min. The morphology and crystallinity of the specimens were determined by microstructural and phase analysis.

  • PDF

Microstructure and Electrical Properties of Vanadium-doped ${Bi_4}{Ti_3}{O_{12}}$ Thin Films Prepared by Sol-gel Method (졸-겔법으로 성장시킨 바나듐이 도핑된 ${Bi_4}{Ti_3}{O_{12}}$ 박막의 미세구조 및 전기적 특성)

  • Kim, Jong-Guk;Kim, Sang-Su;Choe, Eun-Gyeong;Kim, Jin-Heung;Song, Tae-Gwon;Kim, In-Seong
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.960-964
    • /
    • 2001
  • $Bi_{3.99}Ti_{2.97}V_{0.03}O_{12}$ (BTV) thin films with 3 mol% vanadium doping were Prepared on $Pt/Ti/SiO_2/Si$ substrate by sol-gel method. X-ray diffraction analysis indicated that single-phase layered perovskite were obtained and preferred orientation was not observed. Under the annealing temperature at $600^{\circ}C$, the surface morphology of the BTV thin films had fine-rounded particles and then changed plate-like at $650^{\circ}C$ and $700^{\circ}C$. The remanent polarization $(2P_r)$ and coercive field $(2E_c)$ of $700^{\circ}C$ annealed BTV thin film were 25 $\mu$C/cm$^2$ and 116 kV/cm, respectively. In addition, BTV thin film showed little polarization fatigue during $10_9$ switching cycles. These improved ferroelectric properties were attributed to the increased rattling space and reduced oxygen vacancies by substitution $Ti^{4+}$ ion (68 pm) with smaller $V^{5+}$ ion (59 pm). The dielectric constant and loss were measured 130 and 0.03 at 10 kHz, respectively.

  • PDF

Effects of Annealing Conditions on the Properties of Bi1-xLaxTi3O12 Thin Films (열처리 조건이 Bi1-xLaxTi3O12 (x=0.75) 박막의 특성에 미치는 효과)

  • Park Moon Heum;Kim Sang Su;Gang Min Ju;Ha Tae Gon
    • Korean Journal of Materials Research
    • /
    • v.14 no.10
    • /
    • pp.701-706
    • /
    • 2004
  • Bismuth layered structure ferroelectric thin films, La-substituted $Bi_{4}Ti_{3}O_{12}$ ($Bi_{1-x}La_{x}Ti_{3}O_{12}$, x=0.75, BLT) were prepared on the $Pt(111)/Ti/SiO_2/Si(100)$ substrates by a sol-gel spin coating process. The thin films were annealed in various conditions, i.e., oxygen, nitrogen and vacuum atmospheres for various annealing time. We investigated the annealing condition effects on the grain orientation and ferroelectric properties. The measured XRD patterns revealed that the BLT thin films showed only $Bi_{4}Ti_{3}O_{12}$-type phase with random orientation. $La^{3+}$ ion substitution for $Bi^{3+}$ ion in perovskite layers of $Bi_{4}Ti_{3}O_{12}$ decreased the degree of c-axis orientation and increased the remanent polarization ($2P_{r}$). The remanent polarization ($2P_{r}$) and the coercive field ($2E_{c}$) of the BLT thin film annealed at $650^{\circ}C$ for 5 min in oxygen atmosphere were $87{\mu}C/cm^2$ and 182 kV/cm, respectively, at an applied electric field of 240 kV/cm. For all of the BLT thin films annealed in various conditions, the fatigue resistance was shown. The improvement of ferroelectric properties with La substitution in $Bi_{4}Ti_{3}O_{12}$ could be attributed to the changes in space charge densities and grain orientation in the thin film.

Study on Low Temperature Formation of Ferroelectric $Sr_{0.9}4$Bi_{2.1}$$Ta_2$$O_9$ Thin Films by Sol-Gel Process and Rapid Thermal Annealing (솔-젤법 및 급속열처리에 의한 $Sr_{0.9}4$Bi_{2.1}$$Ta_2$$O_9$ 박막의 저온형성에 관한 연구)

  • 장현호;송석표;김병호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.4
    • /
    • pp.312-317
    • /
    • 2000
  • Ferroelectric S $r_{0.9}$/B $i_{2.1}$/T $a_{2}$/ $O_{9}$ solutions were synthesized using sol-gel process in which strontinum ethoxide bismuth ethoxide trantalum ethoxide were used a s startring materials. SBT thin films were coated on Pt/Ti/ $SiO_2$/Si substrates by spin-coating. rapid thermal annealing (RTA) was used to promote crystallization. Thin films were annealed at $700^{\circ}C$ for 1 hr in an oxygen atmosphere. This temperature is about 10$0^{\circ}C$ lower than the usual annealing temperature for SBT thin films. Pt top-electrode was deposited by sputtering and thin films were post-annealed at $700^{\circ}C$ for 30 min. to enhance electrical properties. As the RTA temperature increased the higher 2 $P_{r}$ values were obtained. At RTA temperature being 78$0^{\circ}C$ remanent polarization of S $r_{0.9}$/B $i_{2.1}$/T $a_{2}$/ $O_{9}$ thin film was 7.73 $\mu$C/cm $_2$ and the leakage current density was 1.14$\times$10$^{-7}$ A/c $m^2$ at 3 V. As RTA temperature increased the breakdown voltage was decreased. It is considered that the low-field breadown is caused by the rough surface of SBT films and forming bismuth metal in SBT thin films.films.lms.

  • PDF

Electrical Properties of Sol-gel Derived Ferroelectric Bi3.35Sm0.65Ti3O12 Thin Films by Rapid Thermal Annealing

  • Cho, Tae-Jin;Kang, Dong-Kyun;Kim, Byong-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.2
    • /
    • pp.51-56
    • /
    • 2005
  • Ferroelectric Bi$_{3.35}$Sm$_{0.65}$Ti$_{3}$O$_{12}$(BSmT) thin films were synthesized using a sol-gel process. Bi(TMHD)$_{3}$, Sm$_{5}$(O$^{i}$Pr)13, Ti(O$^{i}$Pr)4 were used as the precursors, which were dissolved in 2­methoxyethanol. The BSmT thin films were deposited on Pt/TiO$_{x}$/SiO$_{2}$/Si substrates by spin­coating. The electrical properties of the thin films were enhanced using rapid thermal annealing process (RTA) at 600 $^{circ}$C for 1 min in O$_{2}$. Thereafter, the thin films were annealed from 600 to 720 $^{circ}$C in oxygen ambient for 1 hr, which was followed by post-annealed for 1 hr after depositing a Pt electrode to enhance the electrical properties. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to analyze the crystallinity and surface morphology of layered perovskite phase, respectively. The remanent polarization value of the BSmT thin films annealed at 720 $^{circ}$C after the RTA treatment was 35.31 $\mu$C/cmz at an applied voltage of 5 V.

Microstructure and Ferroelectric Properties of Randomly Oriented Polysrystalline $(Bi,Nd)_4Ti_3O_{12}$ Thin Films Prepared by Sol-Gel Method (졸-겔법으로 증착된 $(Bi,Nd)_4Ti_3O_{12}$ 박막의 미세구조와 강유전성에 대한 연구)

  • Kang, Dong-Kyun;Kim, Byong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.296-296
    • /
    • 2007
  • Ferroelectric neodymium-substituted $Bi_4Ti_3O_{12}$(BTO) thin films have been successfully deposited on Pt/Ti/$SiO_2$/Si substrate by a sol-gel spin-coating process and the effect of crystallization temperature on their microstructure and ferroelectric properties were studied systematically. $Bi(TMHD)_3$, $Nd(TMHD)_3$, $Ti(O^iPr)_4$ were used as the precursors, which were dissolved in 2-methoxyethanol. The thin films were annealed at various temperatures from 600 to $720^{\circ}C$ in oxygen ambient for 1 hr, which was followed by post-annealed for 1 hr after depositing a Pt electrode to enhance the electrical properties. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to analyze the crystallinity and surface morphology of layered perovskite phase, respectively. The crystallinity of the BNT films was improved and the average grain size increased as the crystallization temperature increased from 600 to $720^{\circ}C$ at an interval of $40^{\circ}C$. The polarization values of the films were a monotonous function of the crystallization temperature. The remanent polarization value of the BNT thin films annealed at $720^{\circ}C$ was $24.82\;{\mu}C/cm^2$ at an applied voltage of 5 V.

  • PDF