• Title/Summary/Keyword: layered structure

Search Result 1,140, Processing Time 0.03 seconds

A Study on the Characteristics of Cell Reaction for the MCMB Carbon as Anode in Li-ion Batteries (리튬이온 전지용 카본(MCMB) 부극재료의 전지반응 특성)

  • 박영태;류호진;김정식
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.172-177
    • /
    • 1999
  • Graphite and carbonaceous materials showed an excellent capability as a negative electrode in Li-ion batteries because Li-ion can be intercalated and de-intercalated reversibly within most carbonaceous materials of layered structure. Also, the electrochemical potential of Li-intercalated carbon anode is almost identical with that of Li metal. In the present study, mesocarbon microbeads(MCMB) were used as anode electrode and its properties of charge/discharge and interfacial reaction with electrolyte were studied by Potentiostat/Galvanostat test, FT-IR analysis, XRD and SEM. The passivation film of solid-state was formed as the interface between electrode and electrolyte as the cell reaction began and, once formed, became thicker with repeated charge/discharge process. Also, the relationship between the passivation film formed at the electrode interface and storage capacity was discussed.

  • PDF

A Preparation and Characteristics of Functional rchitecture Materials Made frm Non-metallic Minerals (비금속광물 분체의 기능성 건축소재화 특성)

  • 김병곤;최상근;박종력;전호석
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.811-817
    • /
    • 2003
  • Recently, application fields of non-metallic minerals by utilizing their structure properties are broadening. Especially, layered minerals have not only excellent shielding or covering ability but also absorbing and storing characteristics of chemical elements between a layers. We considered about the above mentioned characteristics and added functional substances onto their surfaces for the preparation of new environmentally friendly functional materials. In this study, natural graphite and sericite were mainly used to produce for the new environmentally friendly functional building materials. Graphite surfaces were modified with a surfactant (Alkyl Benzyle Demethyle Ammonium Chloride) for anti-bacillus and penicillium. Surface modification mechanism are that primary adsorption by differential zeta potential between graphite and ABDM and secondary adsorption by interaction between surfactant chains take place. Surfactant layers were fully formed and it was expected up to 99.7% up the efficiency of anti-bacillus and penicillium. Also the prepared functional samples have a effect to improve a various efficiency such as electromagnetic wave shield(up to 95%), deodorization(up to 80%), heat storage(5%) etc.

Coastal Forest Construction and Non-Structural Measures for Preventing Tsunami Damage - In Case of Japan - (쓰나미에 대비(對備)한 해안림(海岸林) 조성(造成)과 비구조물(非構造物) 대책(對策) - 일본(日本)의 사례(事例)를 중심(中心)으로 -)

  • Chun, Kun-Woo;Kim, Suk-Woo;Kim, Keong-Nam;Nakashima, Yuhki;Ezaki, Tsugio
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.3 s.160
    • /
    • pp.197-204
    • /
    • 2005
  • This study was conducted to investigate the effect of tsunami which occurred in coastal area of the East Sea in Korea, the function of coastal forest for the reduction of tsunami's speed and energy, and the non-structural measures through the research data of tsunami in Japan. The results showed that tsunami which occurred in the East Sea in 1983 and 1993 reached coastal area of Korea one hour and fifty minutes later from Japan, and caused a loss of lives and property and flooding damage. If 60 m width of coastal forest was formed, the speed was decreased by 30%, the energy by 10%. Therefore, the width of coastal forest must be at least 60 m, of which the stand structure is the multiple-layered forest of mixed-forest, and the wave preventing measures have to be constructed together. In addition, non-structural measures as tsunami warning and survival strategies must be prepared.

Molecular Beam Epitaxial Growth of Oxide Single Crystal Films

  • Yoon, Dae-Ho;Yoshizawa, Masahito
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.508-508
    • /
    • 1996
  • ;The growth of films have considerable interest in the field of superlattice structured multi-layer epitaxy led to realization of new devices concepts. Molecular beam epitaxy (MBE) with in situ observation by reflection high-energy electron diffraction (RHEED) is a key technology for controlled layered growth on the atomic scale in oxide crystal thin films. Also, the combination of radical oxygen source and MBE will certainly accelerate the progress of applications of oxides. In this study, the growth process of single crystal films using by MBE method is discussed taking the oxide materials of Bi-Sr-Ca-Cu family. Oxidation was provided by a flux density of activated oxygen (oxygen radicals) from an rf-excited discharge. Generation of oxygen radicals is obtained in a specially designed radical sources with different types (coil and electrode types). Molecular oxygen was introduced into a quartz tube through a variable leak valve with mass flowmeter. Corresponding to the oxygen flow rate, the pressure of the system ranged from $1{\;}{\times}{\;}10^{-6}{\;}Torr{\;}to{\;}5{\;}{\times}{\;}10^{-5}$ Torr. The base pressure was $1{\;}{\times}{\;}10^{-10}$ Torr. The growth of Bi-oxides was achieved by coevaporation of metal elements and oxygen. In this way a Bi-oxide multilayer structure was prepared on a basal-plane MgO or $SrTiO_3$ substrate. The grown films compiled using RHEED patterns during and after the growth. Futher, the exact observation of oxygen radicals with MBE is an important technology for a approach of growth conditions on stoichiometry and perfection on the atomic scale in oxide. The oxidization degree, which is determined and controlled by the number of activated oxygen when using radical sources of two types, are utilized by voltage locked loop (VLL) method. Coil type is suitable for oxygen radical source than electrode type. The relationship between the flux of oxygen radical and the rf power or oxygen partial pressure estimated. The flux of radicals increases as the rf power increases, and indicates to the frequency change having the the value of about $2{\times}10^{14}{\;}atoms{\;}{\cdots}{\;}cm^{-2}{\;}{\cdots}{\;}S^{-I}$ when the oxygen flow rate of 2.0 seem and rf power 150 W.150 W.

  • PDF

Differences between Sand and Gravel Bars of Streams in Patterns of Vegetation Succession

  • Lee, Chang-Seok;Cho, Yong-Chan;Shin, Hyun-Cheol;Park, Sung-Ae
    • Journal of Ecology and Environment
    • /
    • v.32 no.1
    • /
    • pp.55-60
    • /
    • 2009
  • We analyzed the factors driving succession and the structure, and dynamics of vegetation on sand and gravel bars in order to clarify the differences in vegetation succession in rivers with different river bed substrates. Woody plant communities (dominated by Salix), perennial herb communities (dominated by Miscanthus), and annual plant communities (dominated by Persicaria) appeared in that order from upstream to downstream on the sandbar. The results of DCA ordination based on vegetation data reflected a successional trend. This result suggests that sandbars grow in a downstream direction. Various vegetation types different in successional stage, such as grassland, young stands of Korean red pine (Pinus densiflora), two-layered stands of young and mature pines, and mature pine stands also occurred on gravel bars, but the vegetation in earlier successional stage was established upstream, which is the opposite to the direction found on sandbars. Those results demonstrate that the dynamics of the bed load itself could be a factor affecting vegetation succession in rivers. In fact, sands suspended by running water were transported downstream over the vegetated area of sand bar and thereby created new areas of sandbar on the downstream end of the sandbar. Meanwhile, gravel, which is heavy and thereby is shifted by strong water currents, accumulated on the upstream end of the vegetated area, and thus created new areas of gravel bar in that direction. These results showed that allogenic processes drive vegetation succession on sand and gravel bars in streams and rivers.

The Low Sidelobe Array Antenna Design of Mobile Antenna System for Satellite Multimedia Communications (위성 양방향 통신용 이동 안테나 시스템의 저부엽 특성 배열 안테나 설계)

  • Park Ung Hee;Son Seong Ho;Noh Haeng Sook;Jeon Soon Ik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.1
    • /
    • pp.91-97
    • /
    • 2005
  • In the mobile antenna systems for satellite multimedia communications, the active way antenna having a low sidelobe antenna pattern is described in this paper. This designed and fabricated array antenna is satisfied with international beam pattern regulation on moving states. The subarray of the proposed mobile antenna system is arranged with a stair-planar structure and non-periodic array spacing. This subarray is designed with three-layered microstrip patch as both receiving and transmitting radiator of which are improved with antenna gain and bandwidth. Also, the optimum subarray spacing is designed to make the lowest sidelobe pattern by genetic algorithm. In addition, the characteristics of a GA-perturbed array are investigated from simulated and measured beam pattern results.

Effect of Particle Size and Doping on the Electrochemical Characteristics of Ca-doped LiCoO2 Cathodes

  • Hasan, Fuead;Kim, Jinhong;Song, Heewon;Lee, Seon Hwa;Sung, Jong Hun;Kim, Jisu;Yoo, Hyun Deog
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.352-360
    • /
    • 2020
  • Lithium cobalt oxide (LiCoO2, LCO) has been widely used as a cathode material for Li-ion batteries (LIBs) owing to its excellent electrochemical performance and highly reproducible synthesis even with mass production. To improve the energy density of the LIBs for their deployment in electro-mobility, the full capacity and voltage of the cathode materials need to exploited, especially by operating them at a higher voltage. Herein, we doped LCO with divalent calcium-ion (Ca2+) to stabilize its layered structure during the batteries' operation. The Ca-doped LCO was synthesized by two different routes, namely solid-state and co-precipitation methods, which led to different average particle sizes and levels of dopant's homogeneity. Of these two, the solid-state synthesis resulted in smaller particles with a better homogeneity of the dopant, which led to better electrochemical performance, specifically when operated at a high voltage of 4.5 V. Electrochemical simulations based on a single particle model provided theoretical corroboration for the positive effects of the reduced particle size on the higher rate capability.

Sound-Insulation Design of Aluminum Extruded Panel in Next-Generation High-Speed Train (차세대 고속철도 차량용 알루미늄 압출재의 차음 설계)

  • Kim, Seock-Hyun;Seo, Tae-Gun;Kim, Jeong-Tae;Song, Dal-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.567-574
    • /
    • 2011
  • Aluminum extruded panels are widely used instead of corrugated steel panels for weight reduction in high-speed trains. Of the layers in the train body, it makes the largest contribution to the sound insulation. However, compared with that of a flat panel with the same weight, the TL of the aluminum extruded panel is remarkably lower in the local resonance frequency band. We study aluminum extruded panels for next-generation 400-km/h trains. We investigate the problem of sound insulation and propose a practical method to improve the sound-insulation performance. The local resonance frequency region is increased by a modification of the core structure, and urethane foam is placed in the core. The effect on the sound insulation is verified by experiments. Finally, the improvement for the entire sound-transmission loss is estimated for the layered floor panels of express trains.

Shear strength estimation of RC deep beams using the ANN and strut-and-tie approaches

  • Yavuz, Gunnur
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.657-680
    • /
    • 2016
  • Reinforced concrete (RC) deep beams are structural members that predominantly fail in shear. Therefore, determining the shear strength of these types of beams is very important. The strut-and-tie method is commonly used to design deep beams, and this method has been adopted in many building codes (ACI318-14, Eurocode 2-2004, CSA A23.3-2004). In this study, the efficiency of artificial neural networks (ANNs) in predicting the shear strength of RC deep beams is investigated as a different approach to the strut-and-tie method. An ANN model was developed using experimental data for 214 normal and high-strength concrete deep beams from an existing literature database. Seven different input parameters affecting the shear strength of the RC deep beams were selected to create the ANN structure. Each parameter was arranged as an input vector and a corresponding output vector that includes the shear strength of the RC deep beam. The ANN model was trained and tested using a multi-layered back-propagation method. The most convenient ANN algorithm was determined as trainGDX. Additionally, the results in the existing literature and the accuracy of the strut-and-tie model in ACI318-14 in predicting the shear strength of the RC deep beams were investigated using the same test data. The study shows that the ANN model provides acceptable predictions of the ultimate shear strength of RC deep beams (maximum $R^2{\approx}0.97$). Additionally, the ANN model is shown to provide more accurate predictions of the shear capacity than all the other computed methods in this study. The ACI318-14-STM method was very conservative, as expected. Moreover, the study shows that the proposed ANN model predicts the shear strengths of RC deep beams better than does the strut-and-tie model approaches.

Protection of Location Privacy for Spatio-Temporal Query Processing Using R-Trees (R-트리를 활용한 시공간 질의 처리의 위치 개인정보 보호 기법)

  • Kwon, Dong-Seop
    • The Journal of Society for e-Business Studies
    • /
    • v.15 no.3
    • /
    • pp.85-98
    • /
    • 2010
  • The prevailing infrastructure of ubiquitous computing paradigm on the one hand making significant development for integrating technology in the daily life but on the other hand raising concerns for privacy and confidentiality. This research presents a new privacy-preserving spatio-temporal query processing technique, in which location based services (LBS) can be serviced without revealing specific locations of private users. Existing location cloaking techniques are based on a grid-based structures such as a Quad-tree and a multi-layered grid. Grid-based approaches can suffer a deterioration of the quality in query results since they are based on pre-defined size of grids which cannot be adapted for variations of data distributions. Instead of using a grid, we propose a location-cloaking algorithm which uses the R-tree, a widely adopted spatio-temporal index structure. The proposed algorithm uses the MBRs of leaf nodes as the cloaked locations of users, since each leaf node guarantees having not less than a certain number of objects. Experimental results show the superiority of the proposed method.