• Title/Summary/Keyword: layered double hydroxide

Search Result 67, Processing Time 0.037 seconds

Enhancement of oxygen evolution reaction of NiCo LDH nanocrystals using Mo doping (Mo 도핑을 이용한 NiCo LDH 나노결정의 산소발생반응 향상)

  • Kyoungwon Cho;Jeong Ho Ryu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.92-97
    • /
    • 2024
  • To improve the efficiency of water splitting systems for hydrogen production, the high overvoltages of electrochemical reactions caused by catalysts in the oxygen evolution reaction (OER, Oxygen Evolution Reaction) must be reduced. Among them, LDH (Layered Double Hydroxide) compounds containing transition metal such as Ni, are attracting attention as catalyst materials that can replace precious metals such as platinum that are currently used. In this study, nickel foam, an inexpensive metallic porous material, was used as a support, and NiCo LDH (Layered Double Hydroxide) nanocrystals were synthesized through a hydrothermal synthesis process. In addition, changes in the shape, crystal structure, and water decomposition characteristics of the Mo-doped NiCo LDH nanocrystal samples synthesized by doping Mo to improve OER properties were observed.

Step-wise Anion-Exchange in Layered Double Hydroxide Using Solvothermal Treatment

  • Lee, Jong-Hyeon;Rhee, Seog-Woo;Jung, Duk-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.248-252
    • /
    • 2005
  • Synthetic layered double hydroxides (LDHs), [$Mg_4Al_2(OH)_{12}]CO_3{\cdot}nH_2O$, were prepared in the submicron size of plate-like polycrystals. Anion-exchange reactions with various linear dicarboxylic acids were performed to produce LDH/organic hybrid materials by solvothermal treatment in toluene. X-ray powder diffraction spectra for the products indicated that the interlayer spacings of LDHs remarkably changed, up to 20 $\AA$ when 1,10-decanedicarboxylic acid anions were intercalated as an organic guest. Dicarboxylates-LDHs samples could be also re-exchanged consecutively with other dicarboxylic acids or carbonate without serious destruction of layer structure under the scanning electron microscopic observation.

The Effect of Phosphate Desorption Solution on LDH (Layered Double Hydroxide) Desorption (탈착 용액의 조성변화가 층상이중수산화물에 흡착된 인 탈착에 미치는 영향)

  • Jung, Yong-Jun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.670-675
    • /
    • 2008
  • Batch type adsorption and desorption tests were performed with different types (Powder, Granule) of Layered double hydroxides (LDHs) saturated with phosphate. The adsorption isotherm was approximated as a modified Langmuir type equation. The maximum adsorption capacity was 55 mg-P/g-LDH for powder type LDH, and 46 mg-P/g-LDH for granule type LDH. The highest phosphate desorption (79.6%) was obtained with 20% NaOH solution, whereas the desorption degrees were 4.8, 22.2% and 46.7% in the solutions of acidic condition (pH 4), 30% NaCl, and 3% NaOH, respectively. It was suggested that the optimal condition for the phosphate desorption from LDH was 30% NaCl + 3~6% NaOH solutions. The desorption characteristics of LDH was little influenced by adsorbent type.

Removal of Nitrate by Ferrous Cement Hydrates (2가철 시멘트 수화물에 의한 질산성 질소의 제거)

  • Kang, Wan-Hyup;Park, Tae-Sook;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.53-60
    • /
    • 2005
  • Ferrous cement hydrates made from hydrating Portland cement doped with Fe (II) were reported to reductively dechlorinate chlorinated organics and to reduce Cr (VI) to Cr (III). In this study, kinetics of nitrate removal by ferrous cement hydrates were investigated. Nitrate removal kinetics were characterized by experimental variables such as cement hydration, amount of cement addition, Fe (II) dose, pH, and byproducts. As a result, hydrated cement showed better performances than non-hydrated cement due to the formation of LDH (layered double hydroxide). Doping of Fe (II) into the cement was found to improve removal efficiency at high pHs by association with Fe (II) sorbed on cement hydrates as a reactive reductant. Reduction of nitrate produced ammonium as a major product, which accounted for 63.5% of the final products, and nitrite (0.15%) as a minor product. These results indicate that the developed media are effective as sorbent/reducing agents in the nitrate removal and the reaction mechanisms of nitrate removal are sorption and reduction.

Evaluating Cadmium Ion Removal in Aqueous Solutions and Cytotoxicity Evaluation of Carbon, Synthesized Layered Double Hydroxide, and Multi-wall Carbon Nanotube (활성탄, 합성 층상이중층 수산화물, 카본나노튜브를 이용한 수용액상의 카드뮴의 제거와 흡착제 독성 연구)

  • Kim, Tae-Gyung;Park, Bog-Soung;Jung, Yong-Jun
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.2
    • /
    • pp.211-218
    • /
    • 2017
  • This experiment was carried out with the purpose of testing cadmium adsorption abilities of multi wall carbon nanotube (MWCNT), activated carbon, and synthesized layered double hydroxide (LDH). In the acidic condition, only MWCNT was effective for removing cadmium ion in the aqueous phase while other adsorbents rarely removed it. The MWCNT and cadmium ion adsorption reactions followed pseudo-first order kinetic. When the initial pH value was neutral (pH = 7), cadmium ion was rapidly removed by MWCNT and activated carbon in 4 hr (100% and 99.2%, respectively). Increasing adsorbent dosages affects the pH evolution and cadmium ion removal (0 to 99%). Cytotoxicity test showed that both MWCNT and LDH has low cytotoxic effects on three kind of human cells (A549, HS-294t, and HT-29).

High-valence Mo doping for promoted water splitting of Ni layered double hydroxide microcrystals

  • Kyoungwon Cho;Seungwon Jeong;Je Hong Park;Si Beom Yu;Byeong Jun Kim;Jeong Ho Ryu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.78-82
    • /
    • 2023
  • The oxygen evolution reaction (OER) is the primary challenge in renewable energy storage technologies, specifically electrochemical water splitting for hydrogen generation. We report effects of Mo doping into Ni layered double hydroxide (Ni-LDH) microcrystal on electrocatalytic activities. In this study, Mo doped Ni-LDH were grown on three-dimensional porous nicekl foam (NF) by a facile solvothermal method. Homogeneous LDH structure on the NF was clearly observed. However, the surface microstructure of the nickel foam began to be irregular and collapsed when Mo precursor is doped. Electrocatalytic OER properties were analyzed by Linear sweep voltammetry (LSV) and Electrochemical impedance spectroscopy (EIS). The amount of Mo doping used in the electrocatalytic reaction was found to play a crucial role in improving catalytic activity. The optimum Mo amount introduced into the Ni LDH was discussed with respect to their OER performance.

Microbial Removal Using Layered Double Hydroxides and Iron (Hydr)oxides Immobilized on Granular Media

  • Park, Jeong-Ann;Lee, Chang-Gu;Park, Seong-Jik;Kim, Jae-Hyeon;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.149-156
    • /
    • 2010
  • The objective of this study was to investigate microbial removal using layered double hydroxides (LDHs) and iron (hydr)oxides (IHs) immobilized onto granular media. Column experiments were performed using calcium alginate beads (CA beads), LDHs entrapped in CA beads (LDH beads), quartz sand (QS), iron hydroxide-coated sand (IHCS) and hematite-coated sand (HCS). Microbial breakthrough curves were obtained by monitoring the effluent, with the percentage of microbial removal and collector efficiency then quantified from these curves. The results showed that the LDH beads were ineffective for the removal of the negatively-charged microbes (27.7% at 1 mM solution), even though the positively-charged LDHs were contained on the beads. The above could be related to the immobilization method, where LDH powders were immobilized inside CA beads with nano-sized pores (about 10 nm); therefore, micro-sized microbes (E. coli = 1.21 ${\mu}m$) could not diffuse through the pores to come into contact with the LDHs in the beads, but adhere only to the exterior surface of the beads via polymeric interaction. IHCS was the most effective in the microbial removal (86.0% at 1 mM solution), which could be attributed to the iron hydroxide coated onto the exterior surface of QS had a positive surface charge and, therefore, effectively attracted the negatively-charged microbes via electrostatic interactions. Meanwhile, HCS was far less effective (35.6% at 1 mM solution) than IHCS because the hematite coated onto the external surface of QS is a crystallized iron oxide with a negative surface charge. This study has helped to improve our knowledge on the potential application of functional granular media for microbial removal.

Characteristics of Ion Exchange of Phosphate using Layered Double Hydroxides in Advanced Wastewater Treatment (하수고도처리에서 층상이중수화물을 이용한 인산 이온교환 특성)

  • Song, Ji-Hyun;Shin, Seung-Kyu;Lee, Sang-Hyup;Park, Ki-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.991-995
    • /
    • 2006
  • The layered double hydroxide with the insertion of chloride ions (LDH-Cl), which was synthesized by the co-precipitation method, was applied to investigate the fundamental aspects of the absorptive agent for phosphate removal from wastewater. The adsorption capacity was best described by the Langmuir-FreundIich isotherm, and the estimated isotherm parameters indicate that the LDH-CI capacity for the phosphate removal is much higher than that observed using a natural adsorbent material such iron oxide tailing. The kinetic experiment also showed that the LDH-Cl adsorption reaction rapidly at the adsorptive rate of 0.55 mg-P/g-LDH/min, implying that this adsorbent can be of use in the full-scale applications. The pH had a minimal effect on the LDH adsorption capacity in the range of 5 to 11, although the capacity dropped at the low pHs because of the change in LDH surface properties. Furthermore, other anions such as $Cl^-$ and $NO_3{^-}$ commonly found in the wastewater streams insignificantly affected the phosphate removal efficiencies, while $HCO_3{^-}$ ions had a negative effect on the LDH adsorption capacity due to its high selectivity. The phosphate removal experiment using the actual secondary effluent from a wastewater treatment plant showed the similar decrease in adsorption capacity, indicating that the bicarbonate ions in the wastewater were competing with phosphate for the adsorptive site in the surface of the LDH-Cl. Overall, the synthetic adsorbent material, LDH-Cl, can be a feasible alternative over other conventional chemical agents, since the LDH-Cl exhibits the high phosphate removal capacity with the low sensitivity to other environmental conditions.

MOF-Derived FeCo-Based Layered Double Hydroxides for Oxygen Evolution Reaction

  • Fang Zheng;Mayur A. Gaikwad;Jin Hyeok Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.377-384
    • /
    • 2023
  • Exploring earth-abundant, highly effective and stable electrocatalysts for electrochemical water splitting is urgent and essential to the development of hydrogen (H2) energy technology. Iron-cobalt layered double hydroxide (FeCo-LDH) has been widely used as an electrocatalystfor OER due to its facile synthesis, tunable components, and low cost. However, LDH synthesized by the traditional hydrothermal method tends to easily agglomerate, resulting in an unstable structure that can change or dissolve in an alkaline solution. Therefore, studying the real active phase is highly significant in the design of electrochemical electrode materials. Here, metal-organic frameworks (MOFs) are used as template precursors to derive FeCo-LDH from different iron sources. Iron salts with different anions have a significant impact on the morphology and charge transfer properties of the resulting materials. FeCo-LDH synthesized from iron sulfate solution (FeCo-LDH-SO4) exhibits a hybrid structure of nanosheets and nanowires, quite different from other electrocatalysts that were synthesized from iron chloride and iron nitrate solutions. The final FeCo-LDH-SO4 had an overpotential of 247 mV with a low Tafel-slope of 60.6 mV dec-1 at a current density of 10 mA cm-2 and delivered a long-term stability of 40 h for the OER. This work provides an innovative and feasible strategy to construct efficient electrocatalysts.

Fundamental Study of the Regeneration of Layered Double Hydroxide Saturated with Phosphate (인 포화 층상이중수산화물의 재생에 관한 기초 연구)

  • Choi, Jeong-Hak;Jung, Yong-Jun
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1333-1338
    • /
    • 2014
  • LDHs(layered double hydroxides) are of use adsorbent to remove heavy metals, micro-organic pollutants as well as high concentration of phosphorus from wastewater to low concentration of surface water without pH adjustments. This study examined the generation condition of LDHs saturated with phosphorus. Less than 20% regeneration rate was obtained in the absence of alkali and regeneration solution. After the desorption of LDHs with several conditions of acid and alkali solution, more than 60% of regeneration rate could be expected in the case of using $MgCl_2$ as regeneration solution.