DOI QR코드

DOI QR Code

Evaluating Cadmium Ion Removal in Aqueous Solutions and Cytotoxicity Evaluation of Carbon, Synthesized Layered Double Hydroxide, and Multi-wall Carbon Nanotube

활성탄, 합성 층상이중층 수산화물, 카본나노튜브를 이용한 수용액상의 카드뮴의 제거와 흡착제 독성 연구

  • Received : 2016.12.27
  • Accepted : 2017.03.29
  • Published : 2017.03.30

Abstract

This experiment was carried out with the purpose of testing cadmium adsorption abilities of multi wall carbon nanotube (MWCNT), activated carbon, and synthesized layered double hydroxide (LDH). In the acidic condition, only MWCNT was effective for removing cadmium ion in the aqueous phase while other adsorbents rarely removed it. The MWCNT and cadmium ion adsorption reactions followed pseudo-first order kinetic. When the initial pH value was neutral (pH = 7), cadmium ion was rapidly removed by MWCNT and activated carbon in 4 hr (100% and 99.2%, respectively). Increasing adsorbent dosages affects the pH evolution and cadmium ion removal (0 to 99%). Cytotoxicity test showed that both MWCNT and LDH has low cytotoxic effects on three kind of human cells (A549, HS-294t, and HT-29).

Keywords

References

  1. Ambrosi, A., Antiochia, R., Campanella, L., Dragone, R., and Lavagnini, I. (2005). Electrochemical Determination of Pharmaceuticals in Spiked Water Samples, Journal of Hazardous Materials, 122(3), 219-225. https://doi.org/10.1016/j.jhazmat.2005.03.011
  2. Babic, B. M., Milonjic, S. K., Polovina, M. J., Cupic, S., and BKaludjerovic, B. V. (2002). Adsorption of Zinc, Cadmium and Mercury Ions from Aqueous Solutions on an Activated Carbon Cloth, Carbon, 40(7), 1109-1115. https://doi.org/10.1016/S0008-6223(01)00256-1
  3. Biskup, B. and Subotic, B. (2005). Removal of Heavy Metal Ions from Solutions Using Zeolites. III, Influence of Sodium ion Concentration in the Liquid Phase on the Kinetics of Exchange Processes Between Cadmium Ions from Solution and Sodium Ions from Zeolite A, Separation Science and Technology, 39(4), 925-940. https://doi.org/10.1081/SS-120028454
  4. Brady-Estevez, A. S., Nguyen, T. H., Gutierrez, L., and Elimelech, M. (2010). Impact of Solution Chemistry on Viral Removal by a Single-walled Carbon Nanotube Filter, Water Research, 44(13), 3773-3780. https://doi.org/10.1016/j.watres.2010.04.023
  5. Choi, S. J. And Choy, J. H. (2011). Layered Double Hydroxide Nanoparticles as Target-specific Delivery Carriers: Uptake Mechanism and Toxicity, Nanomedicine, 6(5), 803-814. https://doi.org/10.2217/nnm.11.86
  6. Choy, J. H., Oh, J. M., and Choi, S. J. (2011). Layered Double Hydroxides as Controlled Release Materials. In Comprehensive Biomaterials, Elsevier Oxford, 545-557.
  7. Diniz, C. V., Doyle, F. M., and Ciminelli, V. S. (2002). Effect of pH on the Adsorption of Selected Heavy Metal ions from Concentrated Chloride Solutions by the Chelating Resin Dowex M-4195, Separation Science and Technology, 37(14), 3169-3185. https://doi.org/10.1081/SS-120006155
  8. Djebbi, M. A., Elabed, A., Bouaziz, Z., Sadiki, M., Elabed, S., Namour, P., and Amara, A. B. H. (2016). Delivery System for Berberine Chloride Based on the Nanocarrier ZnAllayered Double Hydroxide: Physicochemical Characterization, Release Behavior and Evaluation of Anti-bacterial Potential, International Journal of Pharmaceutics, 515(1), 422-430. https://doi.org/10.1016/j.ijpharm.2016.09.089
  9. Ku, Y. and Peters, R. W. (1987). Innovative Uses from Carbon Adsorption of Heavy Metals from Plating Wastewaters: I. Activated Carbon Polishing Treatment, Environmental Progress, 6(2), 119-124. https://doi.org/10.1002/ep.670060214
  10. Kueseng, P., Thammakhet, C., Thavarungkul, P., and Kanatharana, P. (2010). Multiwalled Carbon Nanotubes/cryogel Composite, a New Sorbent for Determination of Trace Polycyclic Aromatic Hydrocarbons, Microchemical Journal, 96(2), 317-323. https://doi.org/10.1016/j.microc.2010.05.002
  11. Lee, C. G., Song, M. K., Ryu, J. C., Park, C., Choi, J. W., and Lee, S. H. (2016). Application of Carbon Foam for Heavy Metal Removal from Industrial Plating Wastewater and Toxicity Evaluation of the Adsorbent, Chemosphere, 153, 1-9. https://doi.org/10.1016/j.chemosphere.2016.03.034
  12. Li, Y., Zeng, X., Liu, Y., Yan, S., Hu, Z., and Ni, Y. (2003). Study on the Treatment of Copper-electroplating Wastewater by Chemical Trapping and Flocculation, Separation and Purification Technology, 31(1), 91-95. https://doi.org/10.1016/S1383-5866(02)00162-4
  13. Liang, X., Zang, Y., Xu, Y., Tan, X., Hou, W., Wang, L., and Sun, Y. (2013). Sorption of Metal Cations on Layered Double Hydroxides, Colloids and Surfaces A; Physicochemical and Engineering Aspects, 433, 122-131.
  14. Mishra, P. C. and Patel, R. K. (2009). Removal of Lead and Zinc Ions from Water by Low Cost Adsorbents, Journal of Hazardous Materials, 168(1), 319-325. https://doi.org/10.1016/j.jhazmat.2009.02.026
  15. Nam, S. W., Jung, C., Li, H., Yu, M., Flora, J. R., Boateng, L. K., and Yoon, Y. (2015). Adsorption Characteristics of Diclofenac and Sulfamethoxazole to Graphene Oxide in Aqueous Solution, Chemosphere, 136, 20-26. https://doi.org/10.1016/j.chemosphere.2015.03.061
  16. Rao, M. M., Ramesh, A., Rao, G. P. C., and Seshaiah, K. (2006). Removal of Copper and Cadmium from the Aqueous Solutions by Activated Carbon Derived from Ceiba Pentandra Hulls, Journal of Hazardous Materials, 129(1), 123-129. https://doi.org/10.1016/j.jhazmat.2005.08.018
  17. Riss, T. L., Moravec, R. A., Niles, A. L., Benink, H. A., Worzella, T. J., and Minor. L. (2004). Cell Viability Assays. In Assay Guidance Manual, Sittampalam, G. S., Gal-Edd, N., Arkin, M., Auld, D., Austin, C., Bejcek, B., Glicksman, M., Inglese, J., Lemmon, V., Li, Z., McGee, J., McManus, O., Minor, L., Napper, A., Riss, T., Trask, O. J., and Weidner, J. (eds), Bethesda: Eli Lilly & Company.
  18. Salam, M. A., Al-Zhrani, G., and Kosa, S. A. (2012). Simultaneous Removal of Copper (II), Lead (II), Zinc (II) and Cadmium (II) from Aqueous Solutions by Multi-walled Carbon Nanotubes, Comptes Rendus Chimie, 15(5), 398-408. https://doi.org/10.1016/j.crci.2012.01.013
  19. Satoh, M., Koyama, H., Kaji, T., Kito, H., and Tohyama, C. (2002). Perspectives on Cadmium Toxicity Research, The Tohoku Journal of Experimental Medicine, 196(1), 23-32. https://doi.org/10.1620/tjem.196.23
  20. Simon-Deckers, A., Gouget, B., Mayne-L'Hermite, M., Herlin-Boime, N., Reynaud, C., and Carriere, M. (2008). In Vitro Investigation of Oxide Nanoparticle and Carbon Nanotube Toxicity and Intracellular Accumulation in A549 Human Pneumocytes, Toxicology, 253(1), 137-146. https://doi.org/10.1016/j.tox.2008.09.007
  21. Tan, X. M., Lin, C., and Fugetsu, B. (2009). Studies on Toxicity of Multi-walled Carbon Nanotubes on Suspension Rice Cells, Carbon, 47(15), 3479-3487. https://doi.org/10.1016/j.carbon.2009.08.018
  22. Weng, C. H. and Huang, C. P. (2004). Adsorption Characteristics of Zn (II) from Dilute Aqueous Solution by Fly Ash, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 247(1), 137-143. https://doi.org/10.1016/j.colsurfa.2004.08.050
  23. Yuh-Shan, H. (2004). Citation Review of Lagergren Kinetic Rate Equation on Adsorption Reactions, Scientometrics, 59(1), 171-177. https://doi.org/10.1023/B:SCIE.0000013305.99473.cf
  24. Zamil, S. S., Ahmad, S., Choi, M. H., Park, J. Y., and Yoon, S. C. (2009). Correlating Metal Ionic Characteristics with Biosorption Capacity of Staphylococcus Saprophyticus BMSZ711 using QICAR model, Bioresource Technology, 100(6), 1895-1902. https://doi.org/10.1016/j.biortech.2008.10.014
  25. Zhao, Y., Wu, Q., Li, Y., Nouara, A., Jia, R., and Wang, D. (2014). In vivo Translocation and Toxicity of Multi-walled Carbon Nanotubes are Regulated by microRNAs, Nanoscale, 6(8), 4275-4284. https://doi.org/10.1039/c3nr06784j