• Title/Summary/Keyword: layer removal

Search Result 668, Processing Time 0.023 seconds

Determination of Residual-Stress Distribution in Engineering Plastics (공업용 플라스틱 성형품에 대한 잔류응력의 측정)

  • Kim, Chae-Hwan;Youn, Jae-Ryoun
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.132-135
    • /
    • 2006
  • Injection molding is a flexible production technique for the manufacturing of polymer products, but introduces residual stresses. Residual stresses in a structural material or component are those stresses which exist in the object without other external loads. The layer removal and hole drilling method are used for the measurement of residual stress in injection molded polystyrene part. The hole drilling method is potentially more flexible for determining residual stress in complex geometries and can be used as an adoptable technique for the measurement of residual stress in polymeric materials. Results obtained by experiments agree with each other.

  • PDF

On the Measurment of Residual Stresses in Aluminum Alloy Casting Parts (알루미늄 합금 주조 부품에 발생하는 잔류응력의 측정)

  • 김채환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.102-106
    • /
    • 1999
  • One of the main causes of unwanted dimensional changes in precision metal mold casting parts is excessive and irregular residual stresses induced by temperature gradients and plastic deformation in the solidifying shell. Residual stresses can also cause stress cracking and lower the fatigue life and fracture strength of the casting parts,. In the present study aluminum alloy casting system with metal mold equipped with electrical heating elements and water cooling units was designed and the casting specimens were produced to quantify the effects of different cooling conditions on the development of residual stresses. the layer removal method was used to measure the biaxial residual stresses in casting specimens produced from the experiments. The experimental results agreed with Tien-Richmond's theoretical model for thermal stress development for the solidifying metal plate

  • PDF

Preparation and Water Quality Purification of Permeable Concrete Pavement Filled with Microbial-Soil Sheet (미생물토양시트를 충진한 도로포장용 다공성 콘크리트의 제조 및 수질정화특성)

  • Kang, Young-Heoun;Hwang, Pil-Gi;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.727-733
    • /
    • 2009
  • This study was performed to investigate the physical characteristics like compressive strength, permeability, porosity and the water quality removal characteristics of permeable concrete pavement filled with microbial-soil sheet to remove SS, organic matter and nutrients in artificial rainfall. As a result, it can show the removal efficiency is SS 90~95%, COD 85~93%, BOD 80~83%, T-N 61~75%, T-P 71~78% on WAPS I(W1) and WAPS II(W2). Therefore, permeable concrete pavement filled with microbial-soil sheet shows higher removal efficiency(SS 10%, organic matter and nutrients 30%) than a conventional porous concrete(W3). By filling microbial-soil sheet to permeable concrete pavement, we confirm that the function and efficiency are improved significantly and that a naturally-friendly facility can be developed and applied to treat non-point sources.

EUVL Mask Defect Isolation and Repair using Focused Ion Beam (Focused Ion Beam을 이용한 EUVL Mask Defect Isolation 및 Repair)

  • 김석구;백운규;박재근
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.2
    • /
    • pp.5-9
    • /
    • 2004
  • Microcircuit fabrication requires precise control of impurities in tiny regions of the silicon. These regions must be interconnected to create components and VLSI circuits. The patterns to define such regions are created by lithographic processes. In order to image features smaller than 70 nm, it is necessary to employ non-optical technology (or next generation lithography: NGL). One such NGL is extreme ultra-violet lithography (EUVL). EUVL transmits the pattern on the wafer surface after reflecting ultra-violet through mask pattern. If particles exist on the blank mask, it can't transmit the accurate pattern on the wafer and decrease the reflectivity. It is important to care the blank mask. We removed the particles on the wafer using focused ion beam (FIB). During removal, FIB beam caused damage the multi layer mask and it decreased the reflectivity. The relationship between particle removal and reflectivity is examined: i) transmission electron microscope (TEM) observation after particle removal, ii) reflectivity simulation. It is found that the image mode of FIB is more effective for particle removal than spot and bar mode.

  • PDF

Effects of Oxidizer Additive on the Performance of Copper-Chemical Mechanical Polishing using Tungsten Slurry (텅스텐 슬러리를 사용한 Cu-CMP 특성에서 산화제 첨가의 영향)

  • 이우선;최권우;이영식;최연옥;오용택;서용진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.156-161
    • /
    • 2004
  • We investigated the effects of oxidizer additive on the performance of Cu-CMP process using commonly used tungsten slurry. In order to compare the removal rate and non-uniformity as a function of oxidizer contents, we used alumina-based tungsten slurry and copper blanket wafers deposited by DC sputtering method. According to the CMP removal rates and particle size distribution, and the microstructures of surface layer by SEM image as a function or oxidizer contents were greatly influenced by the slurry chemical composition of oxidizers. The difference in removal rate and roughness of copper surface are believed to cause by modification in the mechanical behavior of $Al_2$O$_3$abrasive particles in CMP slurry.

Control of Shock-Wave/Bound-Layer Interactions by Bleed

  • Shih, T.I.P.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.24-32
    • /
    • 2008
  • Bleeding away a part of the boundary layer next to the wall is an effective method for controlling boundary-layer distortions from incident shock waves or curvature in geometry. When the boundary-layer flow is supersonic, the physics of bleeding with and without an incident shock wave is more complicated than just the removal of lower momentum fluid next to the wall. This paper reviews CFD studies of shock-wave/boundary-layer interactions on a flat plate with bleed into a plenum through a single hole, three holes in tandem, and four rows of staggered holes in which the simulation resolves not just the flow above the plate, but also the flow through each bleed hole and the plenum. The focus is on understanding the nature of the bleed process.

GaAs/Ge/Si Heteroepitaxy by PAE and Its Characteristics (PAE법에 의한 GaAs/Ge/Si 이종접합 성장과 그 특성)

  • 김성수;박상준;이성필;이덕중;최시영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.5
    • /
    • pp.380-386
    • /
    • 1991
  • Hydrogen plasma-assisted epitaxial(PAE) growth of GaAs/Si and GaAs/Ge/Si with Ge buffer layer has been investigated. By means of photoluminescence, Nomarski microscopu, and $\alpha$-step, it could be known that GaAs on Si with Ge buffer layer has better crystalline quality than GaAs on Si without Ge buffer layer. The stoichiometry of GaAs layer on Si was confirmed by the depth profile of Auger electron spectroscope (AES). Also the native oxide(SiO$_2$) layer on Si substrate was plama-etched and the removal of the oxide layer was confirmed by AES. Photoluminescence peak wavelength of GaAs/Ge/Si with Ge buffer of 1\ulcorner thickness and GaAs growth rate of 160$\AA$/min was 8700$\AA$and FWHM was 12$\AA$.

  • PDF

Atomic Layer Deposition of Vanadium Pentoxide on Carbon Electrode for Enhanced Capacitance Performance in Capacitive Deionization

  • Chung, Sangho;Bong, Sungyool;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.315-321
    • /
    • 2022
  • We firstly observed that activated carbon (AC) deposited by atomic-layer vanadium pentoxide (V2O5) was used as CDI electrodes to utilize the high dielectric constant for enhancing the capacitance equipped with atomic layer deposition (ALD). It was demonstrated that the vanadium pentoxide (V2O5) with sub-nanometer layer was effectively deposited onto activated carbon, and the electric double-layer capacitance of the AC was improved due to an increase in the surface charge density originated from polarization, leading to high ion removal in CDI operation. It was confirmed that the performance of modified-AC increases more than 200%, comparable to that of pristine-AC under 1.5 V at 20 mL min-1 in CDI measurements.

Development of Ultral Clean Machining Technology with Electrolytic Polishing Process

  • Lee, Eun-Sang;Park, Jeong--Woo;Moon, Young-Hun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.18-25
    • /
    • 2001
  • Electrolytic polishing is the anodic dissolution process in the transpassive state. It removes non-metallic inclusion and improves mechanical and corrosion resistance of stainless steel. If there is a Bailby layer, it will be removed and the true structure of the surface will be restored. Electrolytic polishing is normally used to remove a very thin layer of material from the surface of metal object. A new electrolyte composed of phosphoric, sulfuric and distilled water has been developed in this study. Two current density, high & low current density regions, have been applied in this study. In this study, In the region of high current density, there is no plateau region but excellent electrolytic polishing effect can be accomplished in short machining time because material removel process and leveling process occur simultaneously. In the low current density region, there can be found plateau region. The material removal process and leveling process occur successively. The aim of this work is to determine electrolytic polishing for stainless steel in terms of high & low current density and workpiece surface roughness.

  • PDF