• Title/Summary/Keyword: layer doping

Search Result 478, Processing Time 0.025 seconds

Design of an Electron Ohmic-Contact to Improve the Balanced Charge Injection in OLEDs

  • Park, Jin-U;Im, Jong-Tae;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.283-283
    • /
    • 2011
  • The n-doping effect by doping metal carbonate into an electron-injecting organic layer can improve the device performance by the balanced carrier injection because an electron ohmic contact between cathode and an electron-transporting layer, for example, a high current density, a high efficiency, a high luminance, and a low power consumption. In the study, first, we investigated an electron-ohmic property of electron-only device, which has a ITO/$Rb_2CO_3$-doped $C_{60}$/Al structure. Second, we examined the I-V-L characteristics of all-ohmic OLEDs, which are glass/ITO/$MoO_x$-doped NPB (25%, 5 nm)/NPB (63 nm)/$Alq_3$ (32 nm)/$Rb_2CO_3$-doped $C_{60}$(y%, 10 nm)/Al. The $MoO_x$doped NPB and $Rb_2CO_3$-doped fullerene layer were used as the hole-ohmic contact and electron-ohmic contact layer in all-ohmic OLEDs, respectively, Third, the electronic structure of the $Rb_2CO_3$-doped $C_{60}$-doped interfaces were investigated by analyzing photoemission properties, such as x-ray photoemission spectroscopy (XPS), Ultraviolet Photoemission spectroscopy (UPS), and Near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, as a doping concentration at the interfaces of $Rb_2CO_3$-doped fullerene are changed. Finally, the correlation between the device performance in all ohmic devices and the interfacial property of the $Rb_2CO_3$-doped $C_{60}$ thin film was discussed with an energy band diagram.

  • PDF

Super Junction LDMOS with N-Buffer Layer (N 버퍽층을 갖는 수퍼접합 LDMOS)

  • Park Il-Yong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.2
    • /
    • pp.72-75
    • /
    • 2006
  • A CMOS compatible Super Junction LDMOS (SJ-LDMOS) structure, which reduces substrate-assisted depletion effects, is reported. The proposed structure uses a N-buffer layer between the pillars and P-substrate to achieve global charge balance between the pillars, the N-buffer layer and the P-substrate. The new structure features high breakdown voltage, low on-resistance, and reduced sensitivity to doping imbalance in the pillars.

A Study on properties of a-Si:H layers by photoelectron spectroscopic (a-Si:H 분광스펙트럼 특성연구)

  • Yang, Hyeon-Hun;Kim, Han-Wool;Kim, Joo Hoe;Kim, Chul Joong;Lee, Chang Gwon;So, Soon-Youl;Park, Gye-Choon;Lee, Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.61.1-61.1
    • /
    • 2011
  • We report on a detailed study on gap-state distribution in thin amorphous silicon layers(a-Si:H) with film thickness between 5 nm and 20 nm c-Si wafers performed by UV excited photoelectron spectroscopy(UV-PES). We measured how the work function, the gap state density, the position of the Fermi-level and the Urbch-energy depend on the layer thickness and the doping level of the ultra thin a-Si:H(n) layer. It was found, that for phosphorous doping the position of the Fermi level saturates at $E_F-E_V$=1.47 eV. This is achieved at a gas phase concentration of 10000 ppm $PH_3$ in the $SiH_4/H_2$ mixture which was used for the PECVD deposition process. The variation of the doping level from 0 to 20000 ppm $PH_3$ addition results in an increase of the Urbach energy from 65 meV to 101 meV and in an increase of the gap state density at midgap($E_i-E_V$=0.86eV) from $3{\times}10^{18}$ to $2{\times}1019cm^{-3}eV^{-1}$.

  • PDF

The study of Na Doping rate for application CsI:Na in the amorphous selenium (비정질 셀레늄 기반에서 CsI:Na 응용을 위한 Na의 조성비 연구)

  • Cha, Byung-Youl;Park, Ji-Koon;Kang, Sang-Sik;Lee, Kyu-Hong;Nam, Sang-Hee;Choi, Heung-Kook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.412-414
    • /
    • 2003
  • This paper is about research of scintillator layer, which is used for Hybrid method to increase electric signals in a-Se, the material of Direct method. In case of the thermal evaporation, CsI has column structure which is an disadvantage as scintillator. But it decreases scattering of incident X-ray, has better Light output intensity than other scintillation materials. CsI was made by Thermal evaporation. The Doping material, Na, 0.1, 0.3, 0.5, 0.7g were added in each sample. Analysis of absorbed wavelength, PL(Photoluminescence), Light output intensity, SEM, and XRD analysis were performed to analyze optical characteristics. Doping rate of CsI:Na to use as scintillation layer in a-Se based detector could be optimized.

  • PDF

Predictions of Phonon and Electron Contributions to Thermal Conductivity in Silicon Films with Varying Doping Density (박막 실리콘 내 도핑 농도 변화에 따른 포논과 전자의 열전도율 기여도에 대한 수치해석)

  • Jin, Jae-Sik;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2182-2187
    • /
    • 2007
  • The relative contributions of phonon and electron to the thermal conductivity of silicon film with varying doping density are evaluated from the modified electron-phonon interaction model, which is applicable to the micro/nanoscale simulation of energy transport between energy carriers. The thermal conductivities of intrinsic silicon layer thicknesses from 20 nm to 500 nm are calculated and extended to the variation in n-type doping densities from 1.0 ${\times}$ $10^{18}$ to 5.0 ${\times}$ $10^{20}$ $cm^{-3}$, which agree well with the experimental data and theoretical model. From simulation results, the phonon and electron contributions to thermal conductivity are extracted. The electron contribution in the silicon is found to be not negligible above $10^{19}$ $cm^{-3}$, which can be classified as semimetal or metal by the value of its electrical resistivity at room temperature. The thermal conductivity due to electron is about 57.2% of the total thermal conductivity at doping concentration 5.0 ${\times}$ $10^{20}$ $cm^{-3}$ and silicon film thickness 100 nm.

  • PDF

Effects of Boron Doping on Properties of CdS Films and Characteristics of CdS/CdTe Solar Cells (보론 도핑에 따른 CdS 박막 및 CdS/CdTe 태양전지 특성)

  • Lee, Jae-Hyeong;Lee, Ho-Yeol;Park, Yong-Gwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.8
    • /
    • pp.563-569
    • /
    • 1999
  • Boron doped CdS films were prepared by chemical bath deposition using boric acid$(H_3BO_3)$ as donor dopant source, and their electrical, optical properties were investigated as a function of doping concentration. In addition, effects of boron doping of CdS films on characteristics of CdS/CdTe solar cells were investigated. Boron doping highly decreased the resistivity and slightly increased optical band gap of CdS films. The lowest value of resistivity was $2 \Omega-cm \;at\; H_3BO_3/Cd(Ac)_2$ molar ratio of 0.1. For the molar ratio more than 0.1, however, the resistivity increased because of decreasing carrier concentration and mobility and showed similar value for undoped films. The photovoltaic characteristics of CdS/CdTe solar cells with boron doped CdS film improved due to the decrease of the conduction band-Fermi level energy gap of CdS films and the series resistance of solar cell.

  • PDF

CVD Graphene Synthesis on Copper Foils and Doping Effect by Nitric Acid

  • Oh, Teresa
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.246-249
    • /
    • 2013
  • Graphene was obtained on Cu foil by thermal decomposition method. A gas mixture of $H_2$ and $CH_4$ and an ambient annealing temperature of $1,000^{\circ}C$ were used during the deposition for 30 Min., and for the transfer onto $SiO_2/Si$ and Si substrates. The physical properties of graphene were investigated with regard to the effect ofnitrogen atom doping and the various substrates used. The G/2D ratio decreased when the graphene became monolayer graphene. The graphene grown on $SiO_2/Si$ substrate showed a low intensity of the G/2D ratio, because the polarity of the $SiO_2$ layer improved the quality of graphene. The intensity of the G/2D ratio of graphene doped with nitrogen atoms increased with the doping time. The quality of graphene depended on the concentration of the nitrogen doping and chemical properties of substrates. High-quality monolayer graphene was obtained with a low G/2D ratio. The increase in the intensity of the G/2D ratios corresponded to a blue shift in the 2D peaks.

Effect of Al Doping on the Properties of ZnO Nanorods Synthesized by Hydrothermal Growth for Gas Sensor Applications

  • Srivastava, Vibha;Babu, Eadi Sunil;Hong, Soon-Ku
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.399-405
    • /
    • 2020
  • In the present investigation we show the effect of Al doping on the length, size, shape, morphology, and sensing property of ZnO nanorods. Effect of Al doping ultimately leads to tuning of electrical and optical properties of ZnO nanorods. Undoped and Al-doped well aligned ZnO nanorods are grown on sputtered ZnO/SiO2/Si (100) pre-grown seed layer substrates by hydrothermal method. The molar ratio of dopant (aluminium nitrate) in the solution, [Al/Zn], is varied from 0.1 % to 3 %. To extract structural and microstructural information we employ field emission scanning electron microscopy and X-ray diffraction techniques. The prepared ZnO nanorods show preferred orientation of ZnO <0001> and are well aligned vertically. The effects of Al doping on the electrical and optical properties are observed by Hall measurement and photoluminescence spectroscopy, respectively, at room temperature. We observe that the diameter and resistivity of the nanorods reach their lowest levels, the carrier concentration becomes high, and emission peak tends to approach the band edge emission of ZnO around 0.5% of Al doping. Sensing behavior of the grown ZnO nanorod samples is tested for H2 gas. The 0.5 mol% Al-doped sample shows highest sensitivity values of ~ 60 % at 250 ℃ and ~ 50 % at 220 ℃.

Key Factors for the Development of Silicon Quantum Dot Solar Cell

  • Kim, Gyeong-Jung;Park, Jae-Hui;Hong, Seung-Hwi;Choe, Seok-Ho;Hwang, Hye-Hyeon;Jang, Jong-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.207-207
    • /
    • 2012
  • Si quantum dot (QD) imbedded in a $SiO_2$ matrix is a promising material for the next generation optoelectronic devices, such as solar cells and light emission diodes (LEDs). However, low conductivity of the Si quantum dot layer is a great hindrance for the performance of the Si QD-based optoelectronic devices. The effective doping of the Si QDs by semiconducting elements is one of the most important factors for the improvement of conductivity. High dielectric constant of the matrix material $SiO_2$ is an additional source of the low conductivity. Active doping of B was observed in nanometer silicon layers confined in $SiO_2$ layers by secondary ion mass spectrometry (SIMS) depth profiling analysis and confirmed by Hall effect measurements. The uniformly distributed boron atoms in the B-doped silicon layers of $[SiO_2(8nm)/B-doped\;Si(10nm)]_5$ films turned out to be segregated into the $Si/SiO_2$ interfaces and the Si bulk, forming a distinct bimodal distribution by annealing at high temperature. B atoms in the Si layers were found to preferentially substitute inactive three-fold Si atoms in the grain boundaries and then substitute the four-fold Si atoms to achieve electrically active doping. As a result, active doping of B is initiated at high doping concentrations above $1.1{\times}10^{20}atoms/cm^3$ and high active doping of $3{\times}10^{20}atoms/cm^3$ could be achieved. The active doping in ultra-thin Si layers were implemented to silicon quantum dots (QDs) to realize a Si QD solar cell. A high energy conversion efficiency of 13.4% was realized from a p-type Si QD solar cell with B concentration of $4{\times}1^{20}atoms/cm^3$. We will present the diffusion behaviors of the various dopants in silicon nanostructures and the performance of the Si quantum dot solar cell with the optimized structures.

  • PDF

Study of Homeotropic Liquid Crystal Characteristics Using Photo-polymer and Homeotropic Polyimide Blended Alignment Layer via UV Irradiation Method (UV 광배향법을 통한 광폴리머와 수직 폴리이미드 혼합 배향막의 수직 배향 특성 연구)

  • Lee, Jin-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.996-999
    • /
    • 2012
  • From UV irradiation, we achieved homeotropic liquid crystal alignment on blended photo-polymer layer which is composed of polyvinyl-cinnamate (PVCi) and homeotropic polyimide (PI). From vertical alignment (VA) mode, we measured threshold voltages by various PVCi doping concentration. Also, the rise time and fall time of VA cells were measured to verify the best doping concentration. Transmittance curves showed about 70% value between 380 nm and 780 nm wavelength which mean visible region.