• Title/Summary/Keyword: layer by layer coatings

Search Result 358, Processing Time 0.023 seconds

Tribological Behavior of Thin PMMA (Poly Methyl Methacrylate) Coating Layers (PMMA(Poly Methyl Methacrylate) 박막 코팅 층의 마찰 및 마멸 거동)

  • Kang S. H;Kim Y. S
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.716-722
    • /
    • 2004
  • Effects of sliding speed, applied load, and thickness of PMMA (Poly Methyl Methacrylate) coating layers on their dry sliding frictional and wear behavior were investigated. Sliding wear tests were carried out using a pin-on-disk wear tester. The PMMA layer was coated on Si wafer by a spin coating process with two different thicknesses, $1.5\mu\textrm{m}$ and $0.8\mu\textrm{m}$. AISI 52100 bearing steel balls were used as a counterpart of the PMMA coating during the wear. Normal applied load and sliding speed were varied. Wear mechanisms of the coatings were investigated by examining worn surfaces using an SEM. Friction coefficient of the coatings decreased with the increase of the applied load. Both adhesion and deformation of the coating determined the coefficient. The thicker PMMA layer with the thickness of $1.5mutextrm{m}$ showed lower friction coefficient than the thinner layer under most test conditions. Effects of sliding speed and applied load on the frictional behavior were varied depending on the thickness of the coating layer.

Formation of Uniform SnO2 Coating Layer on Carbon Nanofiber by Pretreatment in Atomic Layer Deposition (전처리를 이용한 탄소 나노 섬유의 균일한 SnO2 코팅막 형성)

  • Kim, Dong Ha;Riu, Doh-Hyung;Choi, Byung Joon
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.43-47
    • /
    • 2018
  • Carbon nanofibers (CNF) are widely used as active agents for electrodes in Li-ion secondary battery cells, supercapacitors, and fuel cells. Nanoscale coatings on CNF electrodes can increase the output and lifespan of battery devices. Atomic layer deposition (ALD) can control the coating thickness at the nanoscale regardless of the shape, suitable for coating CNFs. However, because the CNF surface comprises stable C-C bonds, initiating homogeneous nuclear formation is difficult because of the lack of initial nucleation sites. This study introduces uniform nucleation site formation on CNF surfaces to promote a uniform $SnO_2$ layer. We pretreat the CNF surface by introducing $H_2O$ or $Al_2O_3$ (trimethylaluminum + $H_2O$) before the $SnO_2$ ALD process to form active sites on the CNF surface. Transmission electron microscopy and energy-dispersive spectroscopy both identify the $SnO_2$ layer morphology on the CNF. The $Al_2O_3$-pretreated sample shows a uniform $SnO_2$ layer, while island-type $SnO_x$ layers grow sparsely on the $H_2O$-pretreated or untreated CNF.

Adhesion Improvements of $TiB_2$ Coatings on Nitrided AlSl H13 Steel ($TiB_2$ 코팅의 접착력 향상을 위한 AlSl H13 steel의 질화처리)

  • Park Bohwan;Jung Dong-Ha;Kim Hoon;Lee Jung-Joong
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.2
    • /
    • pp.79-82
    • /
    • 2005
  • This study investigated the effect of nitriding on the hardness and adhesion properties of $TiB_2$ coatings. Inductively coupled plasma (ICP) was used for both nitriding and deposition. By applying ICP, H13 steel was nitrided at a high rate of $50\;{\mu}m/hr$. After nitriding, a Fe4N compound layer or a diffusion layer was formed according to the hydrogen/nitrogen ratio. Both layers could improve the load-bearing capacity of the substrate by increasing the substrate hardness. The adhesion of the $TiB_2$ coatings increased to $\~30N$ after nitriding, but the hardness of the coating was lowered to 20-30 GPa. However, the adhesion of the $TiB_2$ coatings with a high hardness (>60 GPa) could not be improved substantially by nitriding due to the large difference in hardness between the coating and the substrate. The grain size of the $TiB_2$ coating was larger on the nitrided substrates, resulting in a decrease in the hardness of the coating.

Automatic Layer-by-layer Dipping System for Functional Thin Film Coatings (다층박막적층법 적용 기능성 박막 코팅을 위한 자동화 시스템)

  • Jang, Wonjun;Kim, Young Seok;Park, Yong Tae
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.314-318
    • /
    • 2019
  • A simple and very flexible automatic dipping machine was constructed for producing functional multilayer films on wide substrates via the layer-by-layer (LbL) assembly technique. The proposed machine exhibits several features that allow a fully automated coating operation, such as various depositing recipes, control of the dipping depth and time, operating speed, and rinsing flow, air-assist drying nozzles, and an operation display. The machine uniformly dips a substrate into aqueous mixtures containing complementary (e.g., oppositely charged, capable of hydrogen bonding, or capable of covalent bonding) species. Between the dipping of each species, the sample is spray cleaned with deionized water and blow-dried with air. The dipping, rinsing, and drying areas and times are adjustable by a computer program. Graphene-based thin films up to ten-bilayers were prepared and characterized. This film exhibits the highly filled multilayer structures and low thermal resistance, indicating that the robotic dipping system is simple to produce functional thin film coatings with a variety of different layers.

Superconductor characteristics of BSCCO spray films by Heat treatment (열처리에 따른 BSCCO 용사피막의 초전도특성)

  • Do, Hyeong-Jun;Park, Gyeong-Chae
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.282-284
    • /
    • 2007
  • The superconductor characteristics of BSCCO spray films by Heat treatment was studied. $Bi_2Sr_2CaCu_2O_x$(Bi-2212) is high-Tc superconductor(HTS) coatings have been prepared by Heat treatment. Where high current carrying capabilities are required and therefore thick film and bulk material are called for, the Bi2Sr2Ca1Cu2O8-d(Bi-2212)compound has evoleved as one of the most promising. and the Bi-2212 HTS coating layer is synthesized through the peritectic reaction between Sr-Ca-Cu oxide coating layer and Bi-Cu oxide coating layer by partial melting process. The superconducting characteristics depends on the spray distance which was related to the spray particle melt. The Bi-2212 HTS layer consists of the whisker growth and secondary phase in 2212 layer were observed.

  • PDF

Preparation of Al/Al2O3 Multilayer Coatings on NdFeB Permanent Magnet and their Corrosion Characteristics (NdFeB 영구자석에의 Al/Al2O3 다층막 코팅 및 부식 특성)

  • Jeong, J.I.;Yang, J.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.2
    • /
    • pp.86-94
    • /
    • 2009
  • Various types of multilayer coatings including Al/$Al_2O_3$ structure have been prepared on Nd-Fe-B permanent magnet to modify the morphology of the coating and to enhance the corrosion resistance of the magnet. Magnetron sputtering has been employed to make the multilayer coatings. $Al_2O_3$sputtering conditions were optimized in reactive sputtering by varying the deposition parameters. The formation of $Al_2O_3$ film was confirmed from the binding energy shift measured by electron spectroscopy for chemical analysis. 3 types of coating structures were designed and prepared by magnetron sputtering. The coating structures consist of (1) single Al coating, (2) modified coatings having oxide or plasma treated layer in the middle of coating structure, and (3) Al/$Al_2O_3$ multilayer coatings. Surface and cross-sectional morphologies showed that Al/$Al_2O_3$ multilayer grew as a layered structure, and that very compact Zone 3 like structure were formed. X-ray diffraction peak showed that the crystal orientations of multilayer coatings were similar to that of the bulk powder pattern. Hardness increased drastically when the Al thickness was around 1im in the Al/$Al_2O_3$ multilayer. From the salt spray test and pressure cooker test, it has been shown that the multilayer coatings showed good corrosion resistance compared to Al single or modified layer coatings.

Friction and Wear Properties of Plasma-sprayed Cr2O3-MoO3Composite Coatings at Room Temperature (MoO3가 첨가된 Cr2O3플라즈마 용사코팅의 상온 마찰 마멸 특성)

  • 여인웅;안효석;임대순
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.79-85
    • /
    • 2002
  • Plasma-sprayed Cr$_2$O$_3$-based coatings containing MoO$_3$were studied to gain a better understanding of the influence of MoO$_3$composition in the coatings on their tribological behaviour. A reciprocal type tribo-tester was employed to examine friction and wear behavior of the specimens at room temperature. The physical characteristics of worn surfaces were investigated by scanning electron microscopy and chemical composition of the coating surfaces was analyzed using a X-ray photoelectron spectrometer. The results showed that friction coefficient of the MoO$_3$-added coatings were lower than those without MoO$_3$addition. However pure Cr$_2$O$_3$coating showed the lowest wear loss at the self-mated test. The larger protecting layers were observed at the worn surface of plasma spray coated specimens with MoO$_3$addition. XPS analysis of the protecting layer indicated that MoO$_3$composition was dominantly formed at the surface. MoO$_3$composition in the protecting layer appears to be more favorable in reducing the friction.

Hot-dipped Al-Mg-Si Coating Steel - Its Structure, Electrochemical and Mechanical Properties -

  • Tsuru, Tooru
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.233-238
    • /
    • 2010
  • Hot-dipped Al-Mg-Si coatings to alternate Zn and Zn alloy coatings for steel were examined on metallographic structure, corrosion resistance, sacrificial ability, formation and growth of inter-metallic compounds, and mechanical properties. Near the eutectic composition of quasi-binary system of Al-$Mg_2Si$, very fine eutectic structure of ${\alpha}$-Al and $Mg_2Si$ was obtained and it showed excellent corrosion resistivity and sacrificial ability for a steel in sodium chloride solutions. Formation and growth of Al-Fe inter-metallic compounds at the interface of substrate steel and coated layer was suppressed by addition of Si. The inter-metallic compounds layer was usually brittle, however, the coating layer did not peel off as long as the thickness of the inter-metallic compounds layer was small enough. During sacrificial protection of a steel, amount of hydrogen into the steel was more than ten times smaller than that of Zn coated steel, suggesting to prevent hydrogen embrittlement. Al-Mg-Si coating is expected to apply for several kinds of high strength steels.

Effect of Coating Layer Hardness on the Wear Characteristics of Diesel Engine Cylinder liner-Piston Ring (디젤엔진 실린더 라이너-피스톤 링의 코팅 층 강도에 따른 마모특성 연구)

  • Jang, J.H.;Kim, J.H.;Kim, C.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.5
    • /
    • pp.343-349
    • /
    • 2008
  • The wear between piston ring face and cylinder liner is an extremely unpredictable and hard-to-reproduce phenomenon that significantly decreases engine performance. This study will discuss characteristics of wear between hard and soft piston ring coatings with running surface of cylinder liner. Detailed tribological analysis by using Pin-on-Disk(POD) testing machine describes the lubricity mechanism between piston ring coatings and cylinder liner at different temperature with and without oil. The effect of surface roughness of the cylinder liner on the friction coefficient and wear amount of piston ring coatings will also be analyzed. To simulate scuffing mechanism between piston ring and cylinder liner, accelerated lab testing was performed. This study will provide the data from tribological testing of hard and soft piston ring coatings against cylinder liner. Furthermore, the microstructures and morphological features of the surface and the near-surface materials during wear will be investigated. From the scuffing test by using POD testing machine, scuffing mechanisms for the soft and hard coating will be analyzed and experimentally confirmed.

Effects of Stoichiometry on Properties of NiAl Intermetallics coated on Carbon Steel through Combustion Synthesis (연소합성 코팅된 NiAl 금속간화합물의 화학양론이 미끄럼 마모특성에 미치는 영향)

  • Lee, Han-Young;Lee, Jae-Sung
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.124-132
    • /
    • 2020
  • The effect of the stoichiometry on the sliding wear properties of NiAl coatings has been investigated. Three different powder mixtures with the compositions of Ni-50at%Al, Ni-54at%Al and Ni-42at%Al were diepressed respectively, and which were subsequently coated on mild steel through combustion synthesis in an induction heating system. Sliding wear behavior of the coatings was examined against an alloyed tool steel using a pin-on-disc type sliding wear test machine. As results, it could be seen that powder mixture(Ni-54at%Al) with displaying Al-rich deviations from the stoichiometry of NiAl(Ni-50at%Al) was promoted the most the synthetic reactivity. The microstructure of the coating layer with the compositions of Ni-54at%Al exhibits the porous NiAl single phase structure. However, the microstructure of the coating layer of the compositions of Ni-42at%Al exhibits the denser multi-phase structure containing several intermediate phases in addition to NiAl. Densification of the coating layer was enhanced by increasing the reacting temperature. On the other hand, the wear properties of the coating layers showed that the wear mode at speeds of around 1 m/s was severe wear, regardless of the stoichiometry and reacting temperature. However, wear properties of coating layer with the compositions of Ni-42at%Al were superior to those of coating layer with the compositions of Ni-54at%Al. This would be attributed by the fact that coating layer with the compositions of Ni-42at%Al develops little void and much intermediate phases with high strength.