• Title/Summary/Keyword: layer by layer

Search Result 24,368, Processing Time 0.046 seconds

FORMATION OF IRON SULFIDE BY PLASMA-NITRIDING USING SUBSIDIARY CATHODE

  • Hong, Sung-Pill;Urao, Ryoichi;Takeuchi, Manabu;Kojima, Yoshitaka
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.615-620
    • /
    • 1996
  • Chromium-Molybdenum steel was plasma-nitrided at 823 K for 10.8 ks in an atmosphere of 30% $N_2$-70% $H_2$ gas under 665 Pa without and with a subsidiary cathode of $MoS_2$ to compare ion-nitriding and plasma-sulfnitriding using subsidiary cathode. When the steel was ion-nitrided without $MoS_2$, iron nitride layer of 4$\mu\textrm{m}$ and nitrogen diffusion layer of 400mm were formed on the steel. A compound layer of 15$\mu\textrm{m}$ and nitrogen diffusion layer of 400$\mu\textrm{m}$ were formed on the surface of the steel plasma-sulfnitrided with subsidiary cathode of $MoS_2$. The compound layer consisted of FeS containing Mo and iron nitrides. The nitrides of $\varepsilon$-$Fe_2$, $_3N$ and $\gamma$-$Fe_4N$ formed under the FeS. The thicker compound layer was formed by plasma-sulfnitriding than ion-nitriding. In plasma-sulfnitriding, the surface hardness was about 730 Hv. The surface hardness of the steel plasma-sulfnitrided with $MoS_2$ was lower than that of ion-nitrided without $MoS_2$. This may be due to the soft FeS layer formed on the surface of the plasma-sulfnitrided steel.

  • PDF

A Comparative Study on the Buckling Characteristics of Single-layer and Double-layer Spherical Space Frame Structure with Triangular Network Pattern (삼각형 네트워크를 갖는 단층 및 복층 구형 스페이스 프레임 구조물의 좌굴특성에 관한 비교 연구)

  • 이호상;정환목;권영환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.251-257
    • /
    • 1998
  • Spherical space frame structure with triangular network pattern, which has the various characteristics for the mechanic property, a funtional property, an aesthetic property and so on, has often been used as one of the most efficient space structures. It is expected that this type will be used widely in large-span structural roofs. But because this structure is made of network by combination of line elements there me many nodes therefore, the structure behavior is very complicated and there can be an overall collapse of structure by buckling phenomenon if the external force reaches a limitation. This kind of buckling is due to geometric shape, network pattern, the number of layer and so on, of structure. Therefore spherical space frame with triangle network pattern have attracted many designers and researchers attention all over the world. The number of layer of space frame is divided in to the simgle, double, multi layer. That is important element which is considered deeply in the beginning of structural design. The buckling characteristics of single-layer model and double-layer model for the spherical space frame structure with triangular network pattern are evaluated and the buckling loads of these types are compared with investigation their structural efficiency in this study.

  • PDF

Efficient Mode Decision Algorithm Based on Spatial, Temporal, and Inter-layer Rate-Distortion Correlation Coefficients for Scalable Video Coding

  • Wang, Po-Chun;Li, Gwo-Long;Huang, Shu-Fen;Chen, Mei-Juan;Lin, Shih-Chien
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.577-587
    • /
    • 2010
  • The layered coding structure of scalable video coding (SVC) with adaptive inter-layer prediction causes noticeable computational complexity increments when compared to existing video coding standards. To lighten the computational complexity of SVC, we present a fast algorithm to speed up the inter-mode decision process. The proposed algorithm terminates inter-mode decision early in the enhancement layers by estimating the rate-distortion (RD) cost from the macroblocks of the base layer and the enhancement layer in temporal, spatial, and inter-layer directions. Moreover, a search range decision algorithm is also proposed in this paper to further increase the motion estimation speed by using the motion vector information from temporal, spatial, or inter-layer domains. Simulation results show that the proposed algorithm can determine the best mode and provide more efficient total coding time saving with very slight RD performance degradation for spatial and quality scalabilities.

Effect of Current Collecting Layer on the Impedance of LSM and LSM-YSZ Cathode (LSM 및 LSM-YSZ 양극의 임피던스 특성에 미치는 집전층의 효과)

  • 문지웅;이홍림;김구대;김재동;이해원
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1070-1077
    • /
    • 1998
  • Effect of current collecting layer on the cathode was characterized by AC impedance spectroscopy at 800$^{\circ}C$ under flowing air. LSM-YSZ composite cathode showed lower polarization resistance due to the in-crease of triple phase (LSM/YSZ/Pore) boundary length by incorporation of YSZ. Ohmic resistance {{{{ {R }_{1 } }} of LSM-YSZ was higher than that of pure LSM however because in-plane resistance of the cathode was fair-ly high due to its high specific resistivity. To reduce the in-plane resistance of LSM-YSZ cathode cathode side current collecting layer was required. Ohmic resistance {{{{ {R }_{1 } }} was reduced after forming LSM current col-lecting layer on the LSM-YSZ cathode. In case of pure LSM cathode the formation of Pt, or LSCO current collecting layer reduced polarization resistance {{{{ {R }_{p } }} but ohmic resistance {{{{ {R }_{1 } }} was relatively constant. After annealing of LSM cathode with Pt current collector at higher temperature polarization resistance {{{{ {R }_{p } }} was in-creased but ohmic resistance {{{{ {R }_{1 } }} was constant. These phenomena indicate that Pt or LSCo current col-lecting layers act as a catalytic layer for oxygen reduction of pure LSM cathode. LSCO current collector was effective in reducing the ohmic and polarization resistance of LSM-YSZ cathode.

  • PDF

The recess gate structure for the improvement of breakdown characteristics of GaAs MESFET (GaAs MESFET의 파괴특성 향상을 위한 recess게이트 구조)

  • 장윤영;송정근
    • Electrical & Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.376-382
    • /
    • 1994
  • In this study we developed a program(DEVSIM) to simulate the two dimensional distribution of the electrostatic potential and the electric field of the arbitrary structure consisting of GaAs/AlGaAs semiconductor and metal as well as dielectric. By the comparision of the electric field distribution of GaAs MESFETs with the various recess gates we proposed a suitable device structure to improve the breakdown characteristics of MESFET. According to the results of simulation the breakdown characteristics were improved as the thickness of the active epitaxial layer was decreased. And the planar structure, which had the highly doped layer under the drain for the ohmic contact, was the worst because the highly doped layer prevented the space charge layer below the gate from extending to the drain, which produced the narrow spaced distribution of the electrostatic potential contours resulting in the high electric field near the drain end. Instead of the planar structure with the highly doped drain the recess gate structure having the highly doped epitaxial drain layer show the better breakdown characteristics by allowing the extention of the space charge layer to the drain. Especially, the structure in which the part of the drain epitaxial layer near the gate show the more improvement of the breakdown characteristics.

  • PDF

Limit-current type zirconia oxygen sensor with porous diffusion layer (다공성 확산층을 이용한 한계전류형 지르코니아 산소센서)

  • Oh, Young-Jei;Lee, Chil-Hyoung
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.329-337
    • /
    • 2008
  • Simple, small and portable oxygen sensors were fabricated by tape casting technique. Yttria stabilized zirconia containing cordierite ceramics (YSZC) were used as a porous diffused layer of oxygen in pumping cell. Yttria stabilized zirconia (YSZ) solid electrolyte, YSZC porous diffusion layer and heater-patterned ceramic sheets were prepared by co- firing method. Limit current characteristics and the linear relationship of current to oxygen concentration were observed. Viscosity variation of the slurries both YSZ and YSZC showed a similar behavior, but micro pores in the fired sheet were increased with increasing of the cordierite amount. Molecular diffusion was dominated due to the formation of large pores in porous diffusion layer. The plateau range of limit current in porous-type oxygen sensor was narrow than the one of aperture-type oxygen sensor. However limit current curve was appeared in porous-type oxygen sensor even at the lower applied voltage. The plateau range of limit-current was widen as increasing the thickness of porous diffusion layer of the YSZ containing cordierite. Measuring temperature of $600{\sim}650^{\circ}C$ was recommended for limit-current oxygen sensor. Porous diffusion layer-type oxygen sensor showed faster response than the aperture-type one and was stable up to 30 days running without any crack at interface between the layers.

H2S Micro Gas Sensor Based on a SnO2-CuO Multi-layer Thin Film

  • Kim, Sung-Eun;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.27-30
    • /
    • 2012
  • This paper proposes a micro gas sensor for measuring $H_2S$ gas. This is based on a $SnO_2$-CuO multi-layer thin film. The sensor has a silicon diaphragm, micro heater, and sensing layers. The micro heater is embedded in the sensing layer in order to increase the temperature to an operating temperature. The $SnO_2$-CuO multi layer film is prepared by the alternating deposition method and thermal oxidation which uses an electron beam evaporator and a thermal furnace. To determine the effect of the number of layers, five sets of films are prepared, each with different number of layers. The sensitivities are measured by applying $H_2S$ gas. It has a concentration of 1 ppm at an operating temperature of $270^{\circ}C$. At the same total thickness, the sensitivity of the sensor with multi sensing layers was improved, compared to the sensor with one sensing layer. The sensitivity of the sensor with five layers to 1 ppm of $H_2S$ gas is approximately 68%. This is approximately 12% more than that of a sensor with one-layer.

CHARACTERISTICS OF ORGANIC LIGHT-EMITTING DIODES FOR THE DEVICES WITH ELECTRON INJECTION LAYER (LIF AND $LI_2O$) (전자주입층(LiF와 $Li_2O$)을 사용한 유기 발광 소자의 특성)

  • Shin, Eun-Chul;An, Hui-Chul;Lee, Ho-Sik;Song, Min-Jong;Lee, Won-Jae;Han, Wone-Keun;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.439-440
    • /
    • 2007
  • To enhance the electron injection from the cathode of organic light-emitting diodes (OLEDs), We have studied characteristics of device that electron injection layer(EIL) is inserted between emissive layer and cathode. We fabricated bi-layer cathode $Li_2O$(x nm)/Al(100nm) and LiF(x nm)/Al(100nm) using LiF and $Li_2O$ as an electron injection layer. We analyzed the current efficiency, luminance efficiency, and external quantum efficiency of the device by varying the thickness of $Li_2O$ and LiF to be 0.5nm, 1nm, or 3nm. Using the EIL, we have obtained the efficiency of 7cd/A and the luminance of $20,000cd/m^2$. There is an improvement of efficiency by more than 3 times than the device without the $Li_2O$ layer.

  • PDF

The Evaluation of STS304 Coating Layer on S45C Substrate by Friction Surfacing Process (마찰 육성법을 이용한 S45C 탄소강에 대한 STS304의 코팅층 특성 평가)

  • Noh Joong-Suk;Cho Houn-Jin;Kim Heung-Ju;Chun Chang-Gun;Chang Woong-Seong
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.72-76
    • /
    • 2005
  • Friction surfacing of STS304 consumable rod on S45C substrate was investigated by microstructural observation and mechanical tests. STS304 layer formed a strongly-bonded thick layer under a wide range of surfacing conditions. The highest coating eefficiency was obtained in the condition of 1000rpm-2.5mm/sec-2.5mm/sec. The hardness distribution showed the peak value in the boundary layer and as the consumable rotation speed increased, the boundary layer also hardness increasing. As the consumable rotation speed and the traveling speed increased, the coating efficiency tended to decrease. On the other hand, as the feeding speed increased, the coating efficiency appeared to be increased. The new Fe-Cr-Ni alloy layer is showed in the interface layer on $5\~15{\mu}m$ width. After friction surfacing, corrosion resistance of STS 304 surfacing layers were equaled to that of STS304 consumable rod.

Examination of analytical and finite element solutions regarding contact of a functionally graded layer

  • Yaylaci, Murat;Adiyaman, Gokhan;Oner, Erdal;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.325-336
    • /
    • 2020
  • In this study, the continuous and discontinuous contact problems of functionally graded (FG) layer resting on a rigid foundation were considered. The top of the FG layer was loaded by a distributed load. It was assumed that the shear modulus and the density of the layer varied according to exponential functions along the depth whereas the the Poisson ratio remained constant. The problem first was solved analytically and the results were verified with the ones obtained from finite element (FE) solution. In analytical solution, the stress and displacement components for FG layer were obtained by the help of Fourier integral transform. Critical load expression and integral equation for continuous and discontinuous contact, respectively, using corresponding boundary conditions in each case. The finite element solution of the problem was carried out using ANSYS software program. In continuous contact case, initial separation distance and contact stresses along the contact surface between the FG layer and the rigid foundation were examined. Separation distances and contact stresses were obtained in case of discontinuous contact. The effect of material properties and loading were investigated using both analytical and FE solutions. It was shown that obtained results were compatible with each other.