• Title/Summary/Keyword: lattice structures

Search Result 367, Processing Time 0.029 seconds

Raman Spectroscopy Analysis of Graphene Films Grown on Ni (111) and (100) Surface (니켈 (111)과 (100) 결정면에서 성장한 그래핀에 대한 라만 스펙트럼 분석)

  • Jung, Daesung;Jeon, Cheolho;Song, Wooseok;An, Ki-Seok;Park, Chong-Yun
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.194-202
    • /
    • 2016
  • A graphene film, two-dimensional carbon sheet, is a promising material for future electronic devices and so on. In graphene applications, the effect of substrate on the atomic/electronic structures of graphene is significant, so we studied an interaction between graphene film and substrate. To study the effect, we investigated the graphene films grown on Ni substrate with two crystal face of (111) and (100) by Raman spectroscopy, comparing with graphene films transferred on $SiO_2/Si$ substrate. In our study, the doping effect caused by charge transfer from Ni or $SiO_2/Si$ substrate to graphene was not observed. The bonding force between graphene and Ni substrate is stronger than that between graphene and $SiO_2/Si$. The graphene films grown on Ni substrate showed compressive strain and the growth of graphene films is incommensurate with Ni (100) lattice. The position of 2D band of graphene synthesized on Ni (111) and (100) substrate was different, and this result will be studied in the near future.

Nonstoichiometry and Characteristics of the Perovskite $Y_{1-x}A_xFeO_{3-y}$ (A = Ca, Sr) Systems (페롭스카이트 $Y_{1-x}A_xFeO_{3-y}$ (A = Ca, Sr)계의 비화학양론과 특성 연구)

  • Yo, Chul-Hyun;Lee, Seung-Hyun;Lee, Sung-Joo;Park, Sung-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.617-624
    • /
    • 1991
  • Nonstoichiometric solid solutions of $Y_{1-x}A_xFeO_{3-y}$ (A = Ca, Sr) systems with perovskite structure were prepared for x = 0.00, 0.25, 0.50, 0.75 and 1.00 at 1200$^{\circ}C$ under atmospheric pressure, respectively. Crystallographic structures of the solid solutions of all compositions have been determined by the analysis of X-ray diffraction patterns. Reduced lattice volume of the $Y_{1-x}Ca_xFeO_{3-y}$ system was decreased with increasing x value and that of the $Y_{1-x}Sr_xFeO_{3-y}$ system was increased with increasing the x value. The mole ratios of $ Fe^{4+}$ to $ Fe^{3+}$, ${\tau}$, values in the solid solutions have been determined by Mohr salt's method of analysis and then the mixed valency was identified by Mossbauer spectroscopic analysis at 298 K. The y values were calculated from the x and ${\tau}$, and then nonstoichiometric chemical formulas were fixed. The conduction mechanism could be explained by hopping model of the conduction electrons between the mixed valence states.

  • PDF

Applications of XPS and SIMS for the development of Si quantum dot solar cell

  • Kim, Gyeong-Jung;Hong, Seung-Hwi;Kim, Yong-Seong;Lee, U;Kim, Yeong-Heon;Seo, Se-Yeong;Jang, Jong-Sik;Sin, Dong-Hui;Choe, Seok-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.297-297
    • /
    • 2010
  • Precise control of the position and density of doping elements at the nanoscale is becoming a central issue for realizing state-of-the-art silicon-based optoelectronic devices. As dimensions are scaled down to take benefits from the quantum confinement effect, however, the presence of interfaces and the nature of materials adjacent to silicon turn out to be important and govern the physical properties. Utilization of visible light is a promising method to overcome the efficiency limit of the crystalline Si solar cells. Si quantum dots (QDs) have been proposed as an emission source of visible light, which is based on the quantum confinement effect. Light emission in the visible wavelength has been reported by controlling the size and density of Si QDs embedded within various types of insulating matrix. For the realization of all-Si QD solar cells with homojunctions, it is prerequisite not only to optimize the impurity doping for both p- and n-type Si QDs, but also to construct p-n homojunctions between them. In this study, XPS and SIMS were used for the development of p-type and n-type Si quantum dot solar cells. The stoichiometry of SiOx layers were controlled by in-situ XPS analysis and the concentration of B and P by SIMS for the activated doping in Si nano structures. Especially, it has been experimentally evidenced that boron atoms in silicon nanostructures confined in SiO2 matrix can segregate into the Si/$SiO_2$ interfaces and the Si bulk forming a distinct bimodal spatial distribution. By performing quantitative analysis and theoretical modelling, it has been found that boron incorporated into the four-fold Si crystal lattice can have electrical activity. Based on these findings, p-type Si quantum dot solar cell with the energy-conversion efficiency of 10.2% was realized from a [B-doped $SiO_{1.2}$(2 nm)/$SiO_2(2\;nm)]^{25}$ superlattice film with a B doping level of $4.0{\times}10^{20}\;atoms/cm^2$.

  • PDF

A Computational Mineralogy Study of the Crystal Structure and Stability of Aluminum Silicate (Al2SiO5) Minerals (알루미늄 규산염(Al2SiO5) 광물의 결정구조와 안정성에 대한 계산광물학 연구)

  • Kim, Juhyeok;Son, Sangbo;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.13-22
    • /
    • 2018
  • Aluminum silicates ($Al_2SiO_5$) undergo phase transitions among kyanite, andalusite, and sillimanite depending on temperature and pressure conditions. The minerals are often used as an important indicator of the degree of metamorphism for certain metamorphic rocks. In this study, we have applied classical molecular dynamics (MD) simulations and density functional theory (DFT) to the aluminum silicates. We examined the crystal structures as a function of applied pressure and the corresponding stabilities based on calculated enthalpies at each pressure. In terms of the lattice parameters, both methods showed that the volume decreases as the pressure increases as observed in the experiment. In particular, DFT results differed from experimental results by much less than 1%. As to the relative stability, however, both methods showed different levels of accuracy. In the MD simulations, a transition pressure at which the relative stability between two minerals reverse could not be determined because the enthalpies were insensitive to the applied pressure. On the other hand, in DFT calculations, the relative stability relation among the three minerals was consistent with experiment, although the transition pressure was strongly dependent on the choice of the electronic exchange-correlation functional.

Crystal Structure and Electrochemical Performance of LiNi1-xCoxO2 (x=0.0~1.0) According to Co Substitution (Co 치환량에 따른 LiNi1-xCoxO2 (x=0.0~1.0)의 결정구조 및 전기화학 특성)

  • Hong, Jin K.;Oh, Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • [ $LiNi_{1-x}Co_xO_2\;(x=0.0\~1.0)$ ] powders were synthesized by citrate method, and their crystal structures and electrochemical performance as the cathode material in Li secondary batteries were analyzed. X-ray diffraction analysis revealed that all the samples carry a single phase regardless of the Co substitution. The results of Rietveld refinement suggested that the crystal structure of solid solutions varies according to the Co substitution. When the Co substitution is low $(x=0.3\~0.5)$, the solid solutions carry a cubic-like structure with a relatively small value in the ratio of lattice parameters (c/a). The solid solutions made with a higher Co substitution (x=0.7), however, exhibit a layered structure with a higher c/a ratio. This difference was also observed in the electrochemical voltage spectroscopy (EVS) profiles, whereby the Co component in scarcely substituted materials shows a charging reaction at $3.7V\;(vs.\;Li/Li^+)$, but in the heavily substituted ones at 3.92V.

Studies on Chemical Properties and Thermal Analysis of (Sr,M)FeO3-y System (M=Ca) ((Sr,M)FeO3-y계(M=Ca)의 화학적 성질과 열분석에 대한 연구)

  • Lee, Eun-Seok
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.954-959
    • /
    • 1997
  • The solid solutions of the $Sr_{1-X}M_XFeO_{3-y}$ (x=0.1, 0.2, 0.3, 0.4, 0.5, M=Ca) system having perovskite structures were prepared in air by heat treatment at 1473 K for 18hr. X-ray diffraction assigns cubic system for all the samples and shows that the lattice volume of each system decreases with increasing x value until x=0.3, but increases abruptly from x=0.4. The mole fractions of $Fe^{4+}$ ion($\tau$ value), the amounts of oxygen vacancy (y value) and finally nonstoichiometric chemical formulas for each composition were determined from Mohr salt analysis. TG/DTA thermal analysis (temperature range: 300~1173K) exhibits that 3-y values of the samples having x=0.1 and 0.2, decrease with temperature and increase almost reversibly with decreasing temperature. The samples of $x{\geq}0.3$, however, didn't show the reversible weight change and the 3-y values of them were nearly 2.5 in cooling process. Conductivities of each sample were varied within the semiconductivity range at relatively low temperature. And the conductivity at constant temperature decreases steadily with x value. The conduction mechanism of this ferrite system may be proposed as a hopping model of conducting electrons between the mixed valence states. At high temperature semiconductivity of each sample changed into metallic property.

  • PDF

Optical Characteristics of Near-monolayer InAs Quantum Dots

  • Kim, Yeong-Ho;Kim, Seong-Jun;No, Sam-Gyu;Park, Dong-U;Kim, Jin-Su;Im, In-Sik;Kim, Jong-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.293-294
    • /
    • 2011
  • It is known that semiconductor quantum-dot (QD) heterostructures have superior zero-dimensional quantum confinement, and they have been successfully applied to semiconductor laser diodes (QDLDs) for optical communication and infrared photodetectors (QDIPs) for thermal images [1]. The self-assembled QDs are normally formed at Stranski-Krastanov (S-K) growth mode utilizing the accumulated strain due to lattice-mismatch existing at heterointerfaces between QDs and cap layers. In order to increase the areal density and the number of stacks of QDs, recently, sub-monolayer (SML)-thick QDs (SQDs) with reduced strain were tried by equivalent thicknesses thinner than a wetting layer (WL) existing in conventional QDs (CQDs) by S-K mode. Despite that it is very different from CQDs with a well-defined WL, the SQD structure has been successfully applied to QDIP[2]. In this study, optical characteristics are investigated by using photoluminescence (PL) spectra taken from self-assembled InAs/GaAs QDs whose coverage are changing from submonolayer to a few monolayers. The QD structures were grown by using molecular beam epitaxy (MBE) on semi-insulating GaAs (100) substrates, and formed at a substrate temperature of 480$^{\circ}C$ followed by covering GaAs cap layer at 590$^{\circ}C$. We prepared six 10-period-stacked QD samples with different InAs coverages and thicknesses of GaAs spacer layers. In the QD coverage below WL thickness (~1.7 ML), the majority of SQDs with no WL coexisted with a small amount of CQDs with a WL, and multi-peak spectra changed to a single peak profile. A transition from SQDs to CQDs was found before and after a WL formation, and the sublevel of SQDs peaking at (1.32${\pm}$0.1) eV was much closer to the GaAs bandedge than that of CQDs (~1.2 eV). These revealed that QDs with no WL could be formed by near-ML coverage in InAs/GaAs system, and single-mode SQDs could be achieved by 1.5 ML just below WL that a strain field was entirely uniform.

  • PDF

Mossbauer Studies of Perovskite $Gd_{1-x}Sr_xFeO_{3-y}$ (X = 0.0, 0.5) (Perovskite $Gd_{1-x}Sr_xFeO_{3-y}$ (X = 0.0, 0.5)의 Mossbauer연구)

  • 엄영랑;김철성;서정철;오영제
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.2
    • /
    • pp.67-73
    • /
    • 1998
  • Crystallographic and magnetic properties of perovskite $Gd_{1-x}Sr_xFeO_{3-y}$ (x=0.0, 0.5) substituted $Sr^{2+}$ having larger inoic radius than $Gd^{3+}$ at GdFeO$_3$have been studied by x-ary diffraction, M$\ "{o}$ssbauer spectroscopy, and VSM. The cystal structures are found to be orthorhombic with the lattice parameters : $a_o=5.53\;{\AA},\;b_o=5.608\;{AA},\;C_o=7.724\;{\AA}$ for $Gd_{0.5}Sr_{0.5}FeO_{3-y}$ (x=0.0, 0.5) have been investigated over temperature range from 4.2 to 690 K using the M$\ "{o}$ssbauer technique. The Neel temperatuer of $Gd_{1-x}Sr_xFeO_{3-y}$ system is 690 K with x value of 0.0 and 515 K with x value of 0.5. Analysis of M$\ "{o}$ssbauer spectra Mohr's salt analysis for $Gd_{1-x}Sr_xFeO_{3-y}$ demonstrated the existence of the mixed valence states of iron and the coordination state of $Fe^{3+}$ and $Fe^{4+}$ ions. The Corresponding hyperfine parameters for GdFeO$_3$ are compatible with S=5/2 $Fe^{3+}$ in octahedral cooedination.l cooedination.

  • PDF

Raman spectroscopy study of graphene on Ni(111) and Ni(100)

  • Jung, Dae-Sung;Jeon, Cheol-Ho;Song, Woo-Seok;Jung, Woo-Sung;Choi, Won-Chel;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.59-59
    • /
    • 2010
  • Graphene is a 2-D sheet of $sp^2$-bonded carbon arranged in a honeycomb lattice. This material has attracted major interest, and there are many ongoing efforts in developing graphene devices because of its high charge mobility and crystal quality. Therefore clear understanding of the substrate effect and mechanism of synthesis of graphene is important for potential applications and device fabrication of graphene. In a published paper in J. Phys. Chem. C (2008), the effect of substrate on the atomic/electronic structures of graphene is negligible for graphene made by mechanical cleavage. However, nobody shows the interaction between Ni substrate and graphene. Therefore, we have studied this interaction. In order to studying these effect between graphene and Ni substrate, We have observed graphene synthesized on Ni substrate and graphene transferred on $SiO_2$/Si substrate through Raman spectroscopy. Because Raman spectroscopy has historically been used to probe structural and electronic characteristics of graphite materials, providing useful information on the defects (D-band), in-plane vibration of sp2 carbon atoms (G-band), as well as the stacking orders (2D-band), we selected this as analysis tool. In our study, we could not observe the doping effect between graphene and Ni substrate or between graphene and $SiO_2$/Si substrate because the shift of G band in Raman spectrum was not occurred by charge transfer. We could noticed that the bonding force between graphene and Ni substrate is more strong than Van de Waals force which is the interaction between graphene and $SiO_2$/Si. Furthermore, the synthesized graphene on Ni substrate was in compressive strain. This phenomenon was observed by 2D band blue-shift in Raman spectrum. And, we consider that the graphene is incommensurate growth with Ni polycrystalline substrate.

  • PDF

A Molecular Dynamics Simulation Study of Trioctahedral Clay Minerals (삼팔면체 점토광물에 대한 분자동역학 시뮬레이션 연구)

  • Lee, Jiyeon;Lee, Jin-Yong;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.161-172
    • /
    • 2017
  • Clay minerals play a major role in the geochemical cycles of metals in the Critical Zone, the Earth surface-layer ranging from the groundwater bottom to the tree tops. Atomistic scale research of the very fine particles can help understand the fundamental mechanisms of the important geochemical processes and possibly apply to development of hybrid nanomaterials. Molecular dynamics (MD) simulations can provide atomistic level insights into the crystal structures of clay minerals and the chemical reactivity. Classical MD simulations use a force field which is a parameter set of interatomic pair potentials. The ClayFF force field has been widely used in the MD simulations of dioctahedral clay minerals as the force field was developed mainly based on dioctahedral phyllosilicates. The ClayFF is often used also for trioctahedral mineral simulations, but disagreement exits in selection of the interatomic potential parameters, particularly for Mg atom-types of the octahedral sheet. In this study, MD simulations were performed for trioctahedral clay minerals such as brucite, lizardite, and talc, to test how the two different Mg atom types (i.e., 'mgo' or 'mgh') affect the simulation results. The structural parameters such as lattice parameters and interatomic distances were relatively insensitive to the choice of the parameter, but the vibrational power spectra of hydroxyls were more sensitive to the choice of the parameter particularly for lizardite.