DOI QR코드

DOI QR Code

A Computational Mineralogy Study of the Crystal Structure and Stability of Aluminum Silicate (Al2SiO5) Minerals

알루미늄 규산염(Al2SiO5) 광물의 결정구조와 안정성에 대한 계산광물학 연구

  • Kim, Juhyeok (Department of Geology, Kangwon National University) ;
  • Son, Sangbo (Department of Geology, Kangwon National University) ;
  • Kwon, Kideok D. (Department of Geology, Kangwon National University)
  • 김주혁 (강원대학교 자연과학대학 지질학과) ;
  • 손상보 (강원대학교 자연과학대학 지질학과) ;
  • 권기덕 (강원대학교 자연과학대학 지질학과)
  • Received : 2018.03.02
  • Accepted : 2018.03.30
  • Published : 2018.03.31

Abstract

Aluminum silicates ($Al_2SiO_5$) undergo phase transitions among kyanite, andalusite, and sillimanite depending on temperature and pressure conditions. The minerals are often used as an important indicator of the degree of metamorphism for certain metamorphic rocks. In this study, we have applied classical molecular dynamics (MD) simulations and density functional theory (DFT) to the aluminum silicates. We examined the crystal structures as a function of applied pressure and the corresponding stabilities based on calculated enthalpies at each pressure. In terms of the lattice parameters, both methods showed that the volume decreases as the pressure increases as observed in the experiment. In particular, DFT results differed from experimental results by much less than 1%. As to the relative stability, however, both methods showed different levels of accuracy. In the MD simulations, a transition pressure at which the relative stability between two minerals reverse could not be determined because the enthalpies were insensitive to the applied pressure. On the other hand, in DFT calculations, the relative stability relation among the three minerals was consistent with experiment, although the transition pressure was strongly dependent on the choice of the electronic exchange-correlation functional.

알루미늄 규산염($Al_2SiO_5$) 광물은 온도와 압력 환경에 따라 남정석, 홍주석, 규선석으로 상전이가 일어나는 동질이상(polymorph)으로 변성암의 변성정도를 유추하는 데 사용되는 중요한 광물이다. 이번 연구에서는 고전분자동력학 시뮬레이션(classical molecular dynamic simulations)과 양자역학 계산방법인 밀도범함수이론(density functional theory)을 이용하여 압력에 따른 알루미늄 규산염 광물의 결정구조와 엔탈피를 계산하고, 상대적인 안정성을 평가하였다. 격자상수 계산결과, 분자동력학과 밀도범함수이론 계산 모두 압력에 따라 부피가 줄어드는 기존의 실험결과와 동일한 경향을 보였다. 특히, 밀도범함수이론으로 얻어진 격자상수는 실험과 약 1% 이내의 오차로 매우 정확한 결과를 보였다. 그러나 엔탈피 계산 결과, 분자동력학에서는 압력에 따른 엔탈피의 변화가 거의 없어 광물 간 안정성이 역전되는 상전이 압력을 구할 수 없었다. 밀도범함수이론 계산 결과는 실험과 동일한 경향을 보여주었지만, 전자의 교환-상관 관계를 나타내는 범함수에 따라 상전이 압력이 크게 다른 결과를 보여주었다. 밀도범함수이론 계산 결과는 결정구조와 엔탈피에 대해서 모두 높은 수준의 정확도를 보여주지만, 동질이상의 상도표 작성에는 정량적으로 큰 오차를 보여주었다.

Keywords

References

  1. Accelrys, Inc. (2016) Forcite module. Materials Studio. San Diego.
  2. Allen, M. P. and Tildesley, D. J. (2017) Computer simulation of liquids (2nd Ed.). Oxford university press, Oxford, 640p.
  3. Aryal, S., Rulis, P., and Ching, W. Y. (2008) Density functional calculations of the electronic structure and optical properties of aluminosilicate polymorphs ($Al_2SiO_5$). American Mineralogist, 93, 114-123. https://doi.org/10.2138/am.2008.2664
  4. Berman, R. G. (1988) Internally-consistent thermodynamic data for minerals in the system $Na_2O-K_2OCaO- MgO-FeO-Fe_2O_3-Al_2O_3-SiO_2-TiO_2-H_2O-CO_2$. Journal of petrology, 29, 445-522. https://doi.org/10.1093/petrology/29.2.445
  5. Brownlow, A. H. (1996) Geochemistry (2nd Ed.). Prentice Hall, New Jersey, 580p.
  6. Burt, J. B., Ross, N. L., Angel, R. J., and Koch, M. (2006) Equations of state and structures of andalusite to 9.8 GPa and sillimanite to 8.5 GPa. American Mineralogist, 91, 319-326. https://doi.org/10.2138/am.2006.1875
  7. Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I., Refson, K., and Payne, M. C. (2005) First principles methods using CASTEP. Zeitschrift fur Kristallographie - Crystalline Materials, 220, 567-570.
  8. Cygan, R. T. (2001) Molecular modeling in mineralogy and geochemistry. Reviews in Mineralogy and Geochemistry, 42, 1-36. https://doi.org/10.2138/rmg.2001.42.1
  9. Cygan, R. T., Liang, J. J., and Kalinichev, A. G. (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. The Journal of Physical Chemistry B, 108, 1255-1266. https://doi.org/10.1021/jp0363287
  10. Demichelis, R., Civalleri, B., D'Arco, P., and Dovesi, R. (2010) Performance of 12 DFT functionals in the study of crystal systems: Al2SiO5 orthosilicates and Al hydroxides as a case study. International Journal of Quantum Chemistry, 110, 2260-2273. https://doi.org/10.1002/qua.22574
  11. Donna, L. W. (2002) Coexisting andalusite, kyanite, and sillimanite: Sequential formation of three Al2SiO5 polymorphs during progressive metamorphism near the triple point, Sivrihisar, Turkey. American Mineralogist, 87, 405-416. https://doi.org/10.2138/am-2002-0404
  12. Giannozzi, P., De Gironcoli, S., Pavone, P., and Baroni, S. (1991) Ab initio calculation of phonon dispersions in semiconductors. Physical Review B, 43, 7231. https://doi.org/10.1103/PhysRevB.43.7231
  13. Hemingway, B. S., Robie, R. A., Evans Jr. H. T., and Kerrick, D. M. (1991) Heat capacities and entropies of sillimanite, fibrolite, andalusite, kyanite, and quartz and the $Al_2SiO_5$ phase diagram. American Mineralogist, 76, 1597-1613.
  14. Hohenberg, P. and Kohn, W. (1964) Inhomogeneous electron gas. Physical review, 136, B864. https://doi.org/10.1103/PhysRev.136.B864
  15. Holdaway, M. J. (1971) Stability of andalusite and the aluminum silicate phase diagram. American journal of science, 271, 97-131. https://doi.org/10.2475/ajs.271.2.97
  16. Holdaway, M. J. and Mukhopadhyay, B. (1993) A reevaluation of the stability relations of andalusite; thermochemical data and phase diagram for the aluminum silicates. American Mineralogist, 78, 298-315.
  17. Klein, C., Hurlbut, C. S., and Dana, J. D. (1993) Manual of Mineralogy, 20th edition. John Wiley & Sons, New York, 681p.
  18. Kohn, W. and Sham, L. J. (1965) Self-consistent equations including exchange and correlation effects. Physical review, 140, A1133. https://doi.org/10.1103/PhysRev.140.A1133
  19. Kwon K. D. and Sposito G. (2017) Dirac's dream: Understanding metal sorption by geomedia using density functional theory. Chemical Geology, 464, 4-13. https://doi.org/10.1016/j.chemgeo.2017.01.016
  20. Mattsson, A. E., Schultz, P. A., Desjarlais, M. P., Mattsson, T. R., and Leung, K. (2004) Designing meaningful density functional theory calculations in materials science-a primer. Modelling and Simulation in Materials Science and Engineering, 13, R1.
  21. Oganov, A. R. and Brodholt, J. P. (2000) High-pressure phases in the $Al_2SiO_5$ system and the problem of aluminous phase in the Earth's lower mantle: ab initio calculations. Physics and Chemistry of Minerals, 27, 430-439. https://doi.org/10.1007/s002699900081
  22. Olbricht, W., Chatterjee, N. D., and Miller, K. (1994) Bayes estimation: A novel approach to derivation of internally consistent thermodynamic data for minerals, their uncertainties, and correlations. Part I: Theory. Physics and Chemistry of Minerals, 21, 36-49.
  23. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., and Joannopoulos, J. D. (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of modern physics, 64, 1045. https://doi.org/10.1103/RevModPhys.64.1045
  24. Perdew, J. P., Burke, K., and Ernzerhof, M. (1996) Generalized gradient approximation made simple. Physical review letters, 77, 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  25. Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., Xiaolan, Z., and Burke, K. (2008). Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 100, 136406. https://doi.org/10.1103/PhysRevLett.100.136406
  26. Pisani, C., Schutz, M., Casassa, S., Usvyat, D., Maschio, L., Lorenz, M., and Erba, A. (2012) Cryscor: a program for the post-Hartree-Fock treatment of periodic systems. Physical Chemistry Chemical Physics, 14, 7615-7628. https://doi.org/10.1039/c2cp23927b
  27. Price, G. D. and Vocadlo, L. (1996) Computational mineralogy. CR ACAD SCI II A, 323, 357-371.
  28. Ralph, R. L., Finger, L. W., Hazen, R. M., and Ghose, S. (1984) Compressibility and crystal structure of andalusite at high pressure. American Mineralogist, 69, 513-519.
  29. Ren, X., Rinke P., Joas, C., and Scheffler, M. (2012) Random-phase approximation and its applications in computational chemistry and materials sciennce. Journal of Materials Science, 47, 7447-7471. https://doi.org/10.1007/s10853-012-6570-4
  30. Robie, R. A. and Hemingway, B. S. (1984) Entropies of kyanite, andalusite, and sillimanite: additional constraints on the pressure and temperature of the $Al_2SiO_5$ triple point. American Mineralogist, 69, 298-306.
  31. Segall, M. D., Lindan, P. J., Probert, M. A., Pickard, C. J., Hasnip, P. J., Clark, S. J., and Payne, M. C. (2002) First-principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 14, 2717. https://doi.org/10.1088/0953-8984/14/11/301
  32. Sholl, D. and Steckel, J. A. (2011) Density functional theory: a practical introduction. John Wiley & Sons, New York, 238p.
  33. Trabado, G. P., Plata, O., and Zapata, E. L. (2002) On the parallelization of molecular dynamics codes. Computer physics communications, 147, 711-715. https://doi.org/10.1016/S0010-4655(02)00381-8
  34. Winkler, B., Milman, V., and Payne, M. C. (1995) Ab initio total energy studies of minerals using density functional theory and the local density approximation. Mineralogical Magazine, Vol. 59, Mineralogical Society, 589-596.
  35. Winter, J. K. and Ghose, S. (1979) Thermal expansion and high-temperature crystal chemistry of the $Al_2SiO_5$ polymorphs. American Mineralogist, 64, 573-586.
  36. Yang, H., Downs, R. T., Finger, L. W., Hazen, R. M., and Prewitt, C. T. (1997a) Compressibility and crystal structure of kyanite, $Al_2SiO_5$, at high pressure. American Mineralogist, 82, 467-474. https://doi.org/10.2138/am-1997-5-604
  37. Yang, H., Hazen, R. M., Finger, L. W., Prewitt, C. T., and Downs, R. T. (1997b) Compressibility and crystal structure of sillimanite, $Al_2SiO_5$, at high pressure. Physics and Chemistry of Minerals, 25, 39-47. https://doi.org/10.1007/s002690050084
  38. Zhang, M. Y., Cui, Z. H., and Jiang, H. (2018) Relative Stability of $FeS_2$ Polymorphs with the Random Phase Approximation Approach. Journal of Materials Chemistry A, http://dx.doi.org/10.1039/C8TA00759D.