• 제목/요약/키워드: lateral vibrations

검색결과 91건 처리시간 0.022초

유니버셜 조인트에 의해 구동되는 회전축의 횡진동과 비틀림진동의 연성진동 - 운동방정식의 유도 및 안정성해석 - (Coupled Vibration of Lateral and Torsional Vibrations in a Rotating Shaft Driven through a Universal Joint - Derivation of Equations of Motion and Stability Analysis -)

  • 김정렬;전승환;이돈출
    • 소음진동
    • /
    • 제9권3호
    • /
    • pp.461-465
    • /
    • 1999
  • This paper presents theoretical analyses for unstable vibrations caused by the couple of bending and torsion in a rotating shaft driven through a universal joint. A driving shaft is assumed to be rigid and to rotate with a constant angular velocity. The driven shaft system consists of a flexible shaft with a circular section and a symmetrical rotor attached at a point between the shaft ends. Equations of motion derived hold with an accuracy of the second order of shaft deformations, and are analyzed by the asymptotic method. The vibrations become unstable when the driving shaft rotates with the angular velocity to be approximately equal to half of the sum of the natural frequencies for whirling and torsional vibrations.

  • PDF

250 kW급 초임계 CO2 발전용 감속기의 유체 윤활 베어링 및 회전체 동역학 특성 해석 (Bearing and Rotordynamic Performance Analysis of a 250 kW Reduction Gear System)

  • 이동현;김병옥
    • Tribology and Lubricants
    • /
    • 제32권4호
    • /
    • pp.107-112
    • /
    • 2016
  • This paper presents a rotordynamic analysis of the reduction gear system applied to the 250 kW super critical CO2 cycle. The reduction gear system consists of an input shaft, intermediate shaft, and output shaft. Because of the high rotating speed of the input shaft, we install tilting pad bearings, rolloer bearings support the intermediate and output shafts. To predict the tilting pad bearing performance, we calculate the applied loads to the tilting pad bearings by considering the reaction forces from the gear. In the rotordynamic analysis, gear mesh stiffness results in a coupling effect between the lateral and torsional vibrations. The predicted Campbell diagram shows that there is not a critical speed lower than the rated speed of 30,000 rpm of the input shaft. The predicted modes on the critical speeds are the combined bending modes of the intermediate and output shaft, and the lateral vibrations dominate when compared to the torsional vibrations. The damped natural frequency does not strongly depend on the rotating speeds, owing to the relatively low rotating speed of the intermediate and output shaft and constant stiffness of the roller bearing. In addition, the logarithmic decrements of all the modes are positive; therefore all modes are stable.

Experimental and numerical identification of flutter derivatives for nine bridge deck sections

  • Starossek, Uwe;Aslan, Hasan;Thiesemann, Lydia
    • Wind and Structures
    • /
    • 제12권6호
    • /
    • pp.519-540
    • /
    • 2009
  • This paper presents the results of a study into experimental and numerical methods for the identification of bridge deck flutter derivatives. Nine bridge deck sections were investigated in a water tunnel in order to create an empirical reference set for numerical investigations. The same sections, plus a wide range of further sections, were studied numerically using a commercially available CFD code. The experimental and numerical results were compared with respect to accuracy, sensitivity, and practical suitability. Furthermore, the relevance of the effective angle of attack, the possible assessment of non-critical vibrations, and the formulation of lateral vibrations were studied. Selected results are presented in this paper. The full set of raw data is available online to provide researchers and engineers with a comprehensive benchmarking tool.

Vortex excitation model. Part I. mathematical description and numerical implementation

  • Lipecki, T.;Flaga, A.
    • Wind and Structures
    • /
    • 제16권5호
    • /
    • pp.457-476
    • /
    • 2013
  • This paper presents theoretical background for a semi-empirical, mathematical model of critical vortex excitation of slender structures of compact cross-sections. The model can be applied to slender tower-like structures (chimneys, towers), and to slender elements of structures (masts, pylons, cables). Many empirical formulas describing across-wind load at vortex excitation depending on several flow parameters, Reynolds number range, structure geometry and lock-in phenomenon can be found in literature. The aim of this paper is to demonstrate mathematical background of the vortex excitation model for a theoretical case of the structure section. Extrapolation of the mathematical model for the application to real structures is also presented. Considerations are devoted to various cases of wind flow (steady and unsteady), ranges of Reynolds number and lateral vibrations of structures or their absence. Numerical implementation of the model with application to real structures is also proposed.

기어 물림 효과에 의한 횡-비틀림 연성을 갖는 터보-냉동기 로터-베어링 시스템의 동특성 (Dynamic Characteristics of a Turbo-chiller Rotor-Bearing System having a Lateral-Torsional Coupling by Gear Mesh Effect)

  • 이안성;하진웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1034-1039
    • /
    • 2000
  • In turbo-machines operated at high speeds through gear speed increasers a precise coupled analysis of lateral and torsional vibrations is required to achieve highly reliable designs with low vibration and low noise levels, where the vibration coupling is due to the gear pair mesh stiffness. In this paper, applying the generalized coupled lateral-torsional finite element model of a gear pair element, has been analyzed a coupled lateral-torsional vibration of the prototype 800 RT turbo-chiller rotor-bearing system with a bull-pinion gear speed increaser. Results have shown that the coupled torsional natural frequencies have decreased due to the coupling effect of lateral vibration and particularly, the 2nd torsional natural frequency and its mode shape have had big changes. However, changes of lateral vibration characteristics have been noticed only at high lateral whirl natural frequencies above 15,000 rpm.

  • PDF

철도 차량의 지반진동에 의한 주행안전성 평가 (Running Safety Analysis of Railway Vehicle Systems for Ground Vibration)

  • 최준성;조만섭;이진무
    • 터널과지하공간
    • /
    • 제16권4호
    • /
    • pp.288-295
    • /
    • 2006
  • 본 연구에서는 발파 및 지진발생으로 인한 횡방향 지반진동에 대하여 KTX 차량 및 부산지하철을 대상으로 주행안전성을 평가하였다. 이를 위하여 휠/레일 상호작용 해석 WERIA프로그램인 프로그램을 이용하여 철도차량의 동적거동을 시뮬레이션 하였다. 또한 횡방향 지반진동이 철도차량에 유발할 수 있는 차륜/레일간의 큰 상대변위를 고려하기 위하여 차륜/레일간 접촉면의 기하학적 형상과 크리프힘을 반영하였다. 입력하중은 국내의 내진규정 특성에 부합하는 인공지진과 공사중 발생하는 발파진동을 사용하였다. 해석 결과 차륜/레일간의 상대변위와 탈선계수를 산정하여 철도 차량의 주행안전성을 평가한 결과 탈선가능성은 없는 것으로 나타났다.

철도차량의 전동음 예측에 관한 연구 -차륜과 레일의 소음 기여도 분석- (A Study on Prediction of Rolling Noise for Railway -Noise Contribution of Wheels and Rail-)

  • 김재철;구동회
    • 소음진동
    • /
    • 제10권3호
    • /
    • pp.486-492
    • /
    • 2000
  • The major source of railway noises is rolling noise caused by the interaction of the wheels and rails. This rolling noise is generated by the roughness of the wheel /rail surface on tangent track in the absence of discontinuities such as wheel flats or rail joints. These roughness cause relative vibrations of the wheel and rail at their contact area. The vibrations generated at the contact area are treansmitted through the wheel and rail structures exciting resonances of the wheel and travelling waves in the rail. Then these vibrations radiate noise to the wayside. In this paper we predict the rollingnoise radiated from radial/axial motion of the wheel and vertical/lateral motion of the rail using Remington's analytical model and then compare of the predicted sound pressure and measured one. Although there are some inaccuracy in our prediction. these results show in good agreement between 500 Hz and 3150 Hz.

  • PDF

선반 기어박스의 진동.소음 분석과 저감에 관한 연구 (A Study on Vibration and Noise Reduction of a Lathe Gear Box)

  • 박선균;최영휴;배병태;정택수;김청수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.552-558
    • /
    • 2001
  • When operating lathe gear box which is equipped with geared transmission, it sometimes generates loud noise and excessive vibrations. In order to identify their causes, in this study, torsional and lateral vibration characteristics including critical speeds of the gear transmission system are firstly analyzed using lumped parameter models. Natural frequencies and mode shapes of the gear box structure are also analyzed by using the modal test. Furthermore, measured vibration and noise signals during operations are analyzed and compared with theoretical analysis results. After all, it is concluded that the primary cause of the excessive noise and vibrations is the resonance between gear meshing frequency including its side bands, the frequencies of shaft bending and torsional vibrations, and the natural frequencies of the gear box structure. Consequently the noise and vibration levels are greatly reduced by avoiding resonance between the natural frequencies and gear meshing frequencies through the rearrangement of the gears on the transmission shaft without any gear ratio change.

  • PDF

분기 모우드를 활용한 얇은 빔의 혼돈 역학에 관한 연구 (On the Chaotic Vibrations of Thin Beams by a Bifurcation Mode)

  • 이영섭;주재만;박철희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1995년도 춘계학술대회논문집; 전남대학교, 19 May 1995
    • /
    • pp.121-128
    • /
    • 1995
  • The results are summarized as what follows: 1) The modeling of thin beams, which is a continuous system, into a two DOF system yields satisfactory results for the chaotic vibrations. 2) The concept of "natural forcing function" derived from the eigenfunction of the bifurcation mode is very useful for the natural responses of the system. 3) Among the perturbation techniques, HBM is a good estimate for the response when the geometry of motion is known. 4) It is known that there exist periodic solutions of coupled mode response for somewhat large damping and forcing amplitude, as well as weak damping and forcing. 5) The route-to-chaos related with lateral instability in thin beams is composed of period-doubling and quasiperiodic process and finally follows discontinuous period-doubling process. 6) The chaotic vibrations are verified by using Poincare maps, FFT's, time responses, trajectories in the configuration space, and the very powerful technique Lyapunov characteristics exponents.exponents.

  • PDF

축방향으로 움직이는 박막의 면내 진동해석 (In-plane Vibration Analysis for an Axially Moving Membrane)

  • 정진태;신창호;김원석
    • 한국소음진동공학회논문집
    • /
    • 제12권3호
    • /
    • pp.221-227
    • /
    • 2002
  • The longitudinal and lateral in-plane vibrations of an axially moving membrane are investigated when the membrane has translating acceleration. By extended Hamilton's principle, the governing equations are derived. The equations of motion for the in-plane vibrations are linear and coupled. These equations are discretized by using the Galerkin approximation method after they are transformed into the variational equations, j.e., the weak forms so that the admissible functions can be used for the bases of the in-plane deflections. With the discretized equations for the in-plane vibrations, the natural frequencies and the time histories of the deflections are obtained.